-In order to avoid prescribing open boundary condition on the upstream side of the Hangzhou Bay, in numerical simulation of the tides and residual currents of the Bay, a 1-D model for the Qiantang River is connected t...-In order to avoid prescribing open boundary condition on the upstream side of the Hangzhou Bay, in numerical simulation of the tides and residual currents of the Bay, a 1-D model for the Qiantang River is connected to the 2-D model for the Hangzhou Bay. The harmonic constants of diurnal constituent [ (K1+O1)/2],semidiurnal constituent (M2) and shallow water constituent (M4) are obtained. The results produced by the combined model are in better agreement with the observed ones than those produced solely by the original 2-D model. The combined model gives much more reliable results for tide-induced residual water level and current.展开更多
Sediment samples were collected in the intertidal zone of the Dagu River Estuary, Jiaozhou Bay, China in April,July and October 2010 and February 2011 for examining seasonal dynamics of meiofaunal distribution and the...Sediment samples were collected in the intertidal zone of the Dagu River Estuary, Jiaozhou Bay, China in April,July and October 2010 and February 2011 for examining seasonal dynamics of meiofaunal distribution and their relationship with environmental variables. A total of ten meiofaunal taxa were identified, including free-living marine nematodes, benthic copepods, polychaetes, oligochaetes, bivalves, ostracods, cnidarians, turbellarians,tardigrades and other animals. Free-living marine nematodes were the most dominant group in both abundance and biomass. The abundances of marine nematodes were higher in winter and spring than those in summer and autumn. Most of the meiofauna distributed in the 0–2 cm sediment layer. The abundance of meiofauna in hightidal zone was lower than those in low-tidal and mid-tidal zones. Results of correlation analysis showed that Chlorophyll a was the most important factor to influence the seasonal dynamics of the abundance, biomass of meiofauna and abundances of nematodes and copepods. CLUSTER analysis divided the meiofaunal assemblages into three groups and BIOENV results indicated that salinity, concentration of organic matter, sediment sorting coefficient and sediment median diameter were the main environmental factors influencing the meiofaunal assemblages.展开更多
基金This work was sponsored by the National Natural Science Foundation of China
文摘-In order to avoid prescribing open boundary condition on the upstream side of the Hangzhou Bay, in numerical simulation of the tides and residual currents of the Bay, a 1-D model for the Qiantang River is connected to the 2-D model for the Hangzhou Bay. The harmonic constants of diurnal constituent [ (K1+O1)/2],semidiurnal constituent (M2) and shallow water constituent (M4) are obtained. The results produced by the combined model are in better agreement with the observed ones than those produced solely by the original 2-D model. The combined model gives much more reliable results for tide-induced residual water level and current.
基金The National Natural Science Foundation of China under contract No.41576135the Student Research Development Program of Ocean University of China(OUC-SRDP)under contract No.101201051
文摘Sediment samples were collected in the intertidal zone of the Dagu River Estuary, Jiaozhou Bay, China in April,July and October 2010 and February 2011 for examining seasonal dynamics of meiofaunal distribution and their relationship with environmental variables. A total of ten meiofaunal taxa were identified, including free-living marine nematodes, benthic copepods, polychaetes, oligochaetes, bivalves, ostracods, cnidarians, turbellarians,tardigrades and other animals. Free-living marine nematodes were the most dominant group in both abundance and biomass. The abundances of marine nematodes were higher in winter and spring than those in summer and autumn. Most of the meiofauna distributed in the 0–2 cm sediment layer. The abundance of meiofauna in hightidal zone was lower than those in low-tidal and mid-tidal zones. Results of correlation analysis showed that Chlorophyll a was the most important factor to influence the seasonal dynamics of the abundance, biomass of meiofauna and abundances of nematodes and copepods. CLUSTER analysis divided the meiofaunal assemblages into three groups and BIOENV results indicated that salinity, concentration of organic matter, sediment sorting coefficient and sediment median diameter were the main environmental factors influencing the meiofaunal assemblages.