Since time immemorial,humans have made their homes alongside waterways,and mighty rivers have been the cradles of human civilization.However,as society has evolved at an ever-accelerating pace,our relationship with th...Since time immemorial,humans have made their homes alongside waterways,and mighty rivers have been the cradles of human civilization.However,as society has evolved at an ever-accelerating pace,our relationship with these life-giving streams has shifted dramatically,from one of reverence to exploitation.Now,the profound water crisis has compelled humanity to reexamine its connection with rivers.展开更多
In this short note,we are concerned with the global existence and stability of solutions to the river flow system.We introduce a new technique to set up a relation between the Riemann invariants and the finite mass to...In this short note,we are concerned with the global existence and stability of solutions to the river flow system.We introduce a new technique to set up a relation between the Riemann invariants and the finite mass to obtain a time-independent,bounded solution for any adiabatic exponent.The global existence of solutions was known long ago[Klingenberg and Lu in Commun.Math.Phys.187:327-340,1997].However,since the uncertainty of the function b(x),which corresponds physically to the slope of the topography,the L∞estimates growed larger with respect to the time variable.As a result,it does not guarantee the stability of solutions.By employing a suitable mathematical transformation to control the slope of the topography by the friction and the finite mass,we prove the uniformly bounded estimate with respect to the time variable.This means that our solutions are stable.展开更多
River flow in the Songwe sub-basin is predicted to alter due to climate change, which would have an impact on aquatic habitats, infrastructure, and people’s way of life. Therefore, the influence of climate change sho...River flow in the Songwe sub-basin is predicted to alter due to climate change, which would have an impact on aquatic habitats, infrastructure, and people’s way of life. Therefore, the influence of climate change should be taken into account when making decisions about the sustainable management of water resources in the sub-basin. This study looked into how river discharge would react to climate change in the future. By contrasting hydrological characteristics simulated under historical climate (1981-2010) with projected climate (2011-2040, 2041-2070, and 2071-2100) under two emission scenarios, the effects of climate change on river flow were evaluated (RCP 4.5 and RCP 8.5). The ensemble average of four CORDEX regional climate models was built to address the issue of uncertainty introduced by the climate models. The SWAT model was force-calibrated using the results from the generated ensemble average for the RCP 4.5 and RCP 8.5 emission scenarios in order to mimic the river flow during past (1981-2010) and future (2011-2100) events. The increase in river flows for the Songwe sub-basin is predicted to be largest during the rainy season by both the RCP 4.5 and RCP 8.5 scenarios. Under RCP 8.5, the abrupt decrease in river flow is anticipated to reach its maximum in March 2037, when the discharge will be 44.84 m<sup>3</sup>/sec, and in March 2027, when the discharge will be 48 m<sup>3</sup>/sec. The extreme surge in river flow will peak, according to the RCA4, in February 2023, in April 2083 under RCP 4.5, and, according to the CCLM4 and RCA4, in November 2027 and November 2046, respectively. The expected decrease and increase in river flow throughout both the dry and wet seasons may have an impact on the management of the sub-water basin’s resources, biodiversity, and hydraulic structures. The right adaptations and mitigation strategies should be adopted in order to lessen the negative consequences of climate change on precipitation, temperature, and river flow in the sub-basin.展开更多
The filling of rivers generated by carried solid deposit is a factor for the raising of height of rivers and thus activates the floods and inundations. The quantification of carried solid flow charges through their ch...The filling of rivers generated by carried solid deposit is a factor for the raising of height of rivers and thus activates the floods and inundations. The quantification of carried solid flow charges through their characterization and the analysis of hydrosedimentary dynamics is the second step of the investigation of the solid flow transport in the Mono river. This study aims to quantify the volume of trapped sediments in function of the variation of the geometry of the shape of sections of the river depending of the slope and the flow rate therefore to evaluate the capacity of transport of eroded solid flows of a watercourse from upstream to downstream. Consequently, the decreasing percentage of deposited alluvium from upstream to downstream is calculated along Mono river. Thus the drawn granulometric curve of sediments and the determinate granulometric characteristics of sediments permit to quantify the carried sediment charges at each chosen section with Engelund-Hansen model in Mono river.展开更多
It is well known that, in most cases, soil water doesn't move in the form of laminar flow as described by Darcy law. Only when Reynolds number ( Re ) is no more than 10, does water movement follow Darcy law. A s...It is well known that, in most cases, soil water doesn't move in the form of laminar flow as described by Darcy law. Only when Reynolds number ( Re ) is no more than 10, does water movement follow Darcy law. A soil profile with 2 9 m long and 2 13 2 60 m deep was excavated on a lower slope located at Zigui County, Hubei Province, China. Field observation found that soil pipes were mainly distributed in the transient layer between horizon B with higher degree of granite weathering and horizon C with lower degree of granite weathering. At the foot of the slope, about 5 7 soil pipes per meter were observed along the vertical direction of the slope. The observed results, obtained by continuous observation of soil pipes and pipe flow processes at granite slope for many rainfall events, indicate that the relationship between velocity of pipe flow and hydraulic gradient along the pipe is parabolic rather than linear. Based on the investigated data of soil, landform, and land use etc., combined with observed data of pipe flow derived from many rainfall events, a pipe flow model was developed. For velocity V p, discharge Q p of pipe flow and radius r of soil pipe, great similarity was found between simulated and observed values. Particularly, the simulated length of soil pipes reflects the great difference among soil pipes as a result of its different position in the soil profile. The length values of 4 soil pipes were estimated to be 98 1%, 27 6%, 11 0% and 3 0% of the longest distance of the catchment, respectively. As a special case of water movement, soil pipe flow follows Darcy Weisbach law. Discharge of pipe flow is much greater than infiltration discharge in common. Only when the depth of groundwater is more than the diameter of soil pipe and water layer submerges soil pipes during rainfall, may pipe flow occur. Under these circumstances, discharge of pipe flow is directly proportional to the depth of groundwater.展开更多
Based on the historical records,the flood disasters in Xu-Huai River Basin caused by southward flow of Yellow River were studied,while its effects on Xu-Huai regional economic,transportation and eco-environment were a...Based on the historical records,the flood disasters in Xu-Huai River Basin caused by southward flow of Yellow River were studied,while its effects on Xu-Huai regional economic,transportation and eco-environment were also highlighted,and finally historical natural disasters were presented in this study.展开更多
Some novel techniques of computational fluid dynamics are used to establish a mathematical model for the open diversion channel with two embankments in river blocking.The technique of boundary fitted coordinate syste...Some novel techniques of computational fluid dynamics are used to establish a mathematical model for the open diversion channel with two embankments in river blocking.The technique of boundary fitted coordinate system is used to overcome the difficulties resulting from the complicated shapes of natural river boundaries;the method of alternating direction implicit finite difference scheme is used to solve the partial differential equations in the transformed plane;and the technique of moving boundary is used to deal with the river bed exposed to water surface.This model has been used to predict the flow characteristics in the blocking of the Yangtz river in the Three Gorge Project (TGP).Comparison between the computed and experimental data shows a satisfactory agreement.展开更多
[Objective]The activities of urease and phosphatase in integrated vertical flow constructed wetland and purification effect of black and malodorous river were studied.[Method]Honeycomb stone and soft filler were used ...[Objective]The activities of urease and phosphatase in integrated vertical flow constructed wetland and purification effect of black and malodorous river were studied.[Method]Honeycomb stone and soft filler were used as matrix,the biological grid integrated vertical flow constructed wetland system was built to strengthen treatment for black and malodorous river,and the activities of urease and phosphatase of two fillers in different functional areas of constructed wetland were tested to study the film formation property of two fillers in different functional areas.[Result]Both urease and phosphatase activities on biofilm of soft filler were significantly higher than on biofilm of honeycomb stone filler;indicating that choosing soft filler was more advantageous to the growth of biofilm;and urease activity had significant correlation with total nitrogen removal rate,while phosphatase activity had no significant correlation with total phosphorus removal rate.[Conclusion]This study provided evidences for utilizing the activities of urease and phosphatase to evaluate the purification effect of black and malodorous river and choose appropriate filler.展开更多
Investigations from August, 1985 to July , 1986 showed that the high concentration area of PO4-P , SiO3-Si and NO3-N gradually reduced with the reduction of the area of the Changjiang River diluted water from summer, ...Investigations from August, 1985 to July , 1986 showed that the high concentration area of PO4-P , SiO3-Si and NO3-N gradually reduced with the reduction of the area of the Changjiang River diluted water from summer, autumn to winter , and that the seasonal distributions and variations of the nutrients concentrations were mainly controlled by the river flow and were also related to the growth and decline of phytoplankton . The conservation of SiO3-Si and NO3-N in the estuary in the flood season was poorer than that in the dry season .. The behaviour of PO4-P in the estuary shows that aside from -biological removal, buffering of PCU-P is possible in the estuary . The highest monthly average concentrations and annual average concentrations in the river mouth were respectively 0.88 and 0.57 umol/L for PO4-P,191.5 and 96.2 umol/L for SiO3-Si, and 81.6 and 58.6 umol/L for NOs-N . The Changjiang’s annual transports of PO4-P , SiO3-Si and NO3-N to the sea were about 1.4×104tons , 204.4×104 tons and 63.展开更多
In order to realistically reflect the difference between regional water demand for instream flow and river ecological water demand as well as to resolve the problem that water demand may be counted repeatedly, a conce...In order to realistically reflect the difference between regional water demand for instream flow and river ecological water demand as well as to resolve the problem that water demand may be counted repeatedly, a concept of regional water demand for minimum instream flow have been developed. The concept was used in the process of determining river functions and calculating ecological water demand for a river. The Yellow River watershed was used to validate the calculation methodology for regional water demand. CaIculation results indicate that there are significant differences in water demands among the different regions. The regional water demand at the downstream of the Yellow River is the largest about 14.893 × 10^9 m^3/a. The regional water demand of upstream, Lanzhou-Hekou section is the smallest about -5.012 × 10^9 m^3/a. The total ecological water demand of the Yellow River Basin is 23.06 × 10^9 m^3/a, about the 39% of surface water resources of the water resources should not exceed 61% in the Yellow River Basin. Yellow River Basin. That means the maximum available surface The regional river ecological water demands at the Lower Section of the Yellow River and Longyangxia-Lanzhou Section exceed the surface water resources produced in its region and need to be supplemented from other regions through the water rational planning of watershed water resources. These results provides technical basis for rational plan of water resources of the Yellow River Basin.展开更多
This paper discussed theory and methodologies of debris-flow risk assessment and established an implementation process according to indicators of debris-flow hazard degree, vulnerability, risk degree, etc. Among these...This paper discussed theory and methodologies of debris-flow risk assessment and established an implementation process according to indicators of debris-flow hazard degree, vulnerability, risk degree, etc. Among these methodologies, historical and potential hazard degree was comprehensively considered into hazard assessment and hazard index was presented to indicate the debris-flow hazard degree. Regarding debris-flow vulnerability assessment, its statistical data and calculating procedure were based on the hazard-degree regionalization instead of administrative divisions, which improved the assessing scientificity and precision. These quantitative methodologies integrated with Geography Information System (GIS) were applied to the risk assessment of debris flows in the upper reach of Yangtze River. Its results were in substantial agreement on investigation data and the actual distribution of debris flows, which showed that these principles and methodologies were reasonable and feasible and can provide basis or reference for debris-flow risk assessment and disaster management.展开更多
Conservation of endangered or economic fish and control of invasive fish is a great challenge of hydraulic engineering worldwide.Flow velocity has been recognized to affect the spawning of fishes delivering drifting e...Conservation of endangered or economic fish and control of invasive fish is a great challenge of hydraulic engineering worldwide.Flow velocity has been recognized to affect the spawning of fishes delivering drifting eggs in rivers.However,solid scientific supports and associated mechanisms to establish quantitative relations between flow velocity and fish reproduction,taking into account spawning,fertilizing,hatching,as well as surviving,are lacking.In this paper,we quantified the relationship between flow velocity and reproduction of Chinese carps through both lab and field experiments.The results showed that a minimum velocity was required to trigger Hypophthalmichthys molitrix(H.molitrix)releasing eggs,and a velocity range was preferred to sustain spawning activity.However,the embryo incubation and larvae development of H.molitrix were found to be inhibited with the increase in flow velocity.Considering the requirements of spawning and hatching,as well as larvae surviving,an optimized flow velocity processes was identified for the reproduction of H.molitrix in rivers.These findings were of great significance to the adaptive operation of reservoirs to create reasonable and precise ecological flows for managing fish reproduction,as shown by the promising results in the engineering application to the Three Gorges Reservoir.展开更多
Rapid population growth and artificial oasis enlargement did pose great threat to the natural riparian ecosystems of Tarim River and caused seriously ecological deterioration and greater desertification of the Tarim R...Rapid population growth and artificial oasis enlargement did pose great threat to the natural riparian ecosystems of Tarim River and caused seriously ecological deterioration and greater desertification of the Tarim River Basin in the second half of 20 century. Restoration of the endangered riparian ecosystem requires that environmental flow should be restored through restricted and uncontrolled flow diversion irrigation in tributary areas. Implementation of such restriction needs further the basin-wide reallocation of water resources through a set of engineering and non-engineering measures taken to ensure the water requirement in the tributary and maintain effective flows in Tarim River. As one of evolving HELP (Hydrology for Environment, Life and Policy) basins, the article first presents an overview of hydrology, socio-economic development and ecosystem evolution of the Tarim River Basin. Then, those measures for restoring and maintaining environmental flow are reviewed and analyzed along with its applicability and validity. The issues emerging in implementing those measures are also explored, and then the conclusions were summarized. Lessons learned could provide a good example for other basins under similar conditions.展开更多
An increase in extreme precipitation events due to future climate change will have a decisive influence on the formation of debris flows in earthquake-stricken areas. This paper aimed to describe the possible impacts ...An increase in extreme precipitation events due to future climate change will have a decisive influence on the formation of debris flows in earthquake-stricken areas. This paper aimed to describe the possible impacts of future climate change on debris flow hazards in the Upper Minjiang River basin in Northwest Sichuan of China, which was severely affected by the 2008 Wenchuan earthquake. The study area was divided into 1285 catchments, which were used as the basic assessment units for debris flow hazards. Based on the current understanding of the causes of debris flows, a binary logistic regression model was used to screen key factors based on local geologic, geomorphologic, soil,vegetation, and meteorological and climatic conditions. We used the weighted summation method to obtain a composite index for debris flow hazards, based on two weight allocation methods: Relative Degree Analysis and rough set theory. Our results showed that the assessment model using the rough set theory resulted in better accuracy. According to the bias corrected and downscaled daily climate model data, future annual precipitation(2030-2059) in the study area are expected to decrease, with an increasing number of heavy rainfall events. Under future climate change, areas with a high-level of debris flow hazard will be even more dangerous, and 5.9% more of the study area was categorized as having a high-level hazard. Future climate change will cause an increase in debris flow hazard levels for 128 catchments, accounting for 10.5% of the total area. In the coming few decades, attention should be paid not only to traditional areas with high-level of debris flow hazards, but also to those areas with an increased hazard level to improve their resilience to debris flow disasters.展开更多
This paper deals with time series of the Yellow River daily flows at Tongguan hydrological station, from the year 2000 to 2005. Power spectrum analysis and statistical moment scaling function on a range of scales reve...This paper deals with time series of the Yellow River daily flows at Tongguan hydrological station, from the year 2000 to 2005. Power spectrum analysis and statistical moment scaling function on a range of scales revealed scaling qualities of the data. The partition function, which displayed a convex curvature, and the generalized dimension function showed that multifractality is presented. The singularity spectrum, which is single-humped, has shown strong multifractality degree.展开更多
Flow discharge from the river basin into the sea has severe impacts on the immediate vicinity of river channels, estuaries, and coastal areas. This paper analyzes the features and temporal trends of flow discharge at ...Flow discharge from the river basin into the sea has severe impacts on the immediate vicinity of river channels, estuaries, and coastal areas. This paper analyzes the features and temporal trends of flow discharge at Pearl River's three main gauge stations: the Wuzhou, Shijiao, and Boluo gauge stations on the West River, North River, and East River, respectively. The results show no significant trend in annual mean discharge into the sea at the three gauge stations. Changes of monthly mean discharge at the Boluo Gauge Station are evident, and a majority of monthly discharge in the dry season displays significant increasing trends. Furthermore, changes of the extreme discharge are quite evident, with a significant decreasing trend in the annual maximum discharge and a significant increasing trend in the minimum one. The significantly decreasing ratio of the flood discharge to annual discharge at the Boluo Gauge Station indicates that the flow discharge from the East River has increased in the dry season and decreased in the flood season since the construction of dams and reservoirs. At the other two gauge stations, the Wuzhou and Shijiao gauge stations, the seasonal discharge generally does not change perceptibly. Human impacts, especially those pertaining to reservoir and dam construction, appear to be responsible for the seasonal variation of flow discharge. The results indicate that the construction and operation of dams and reservoirs in the East River have a greater influence on flow discharge, which can well explain why the seasonal variation of flow discharge from the East River is more evident.展开更多
The frequency and extent of debris flows have increased tremendously due to the extreme weather and the Wenchuan earthquake on May 12, 2008. Previous studies focused on the debris flow from gullies damming the mountai...The frequency and extent of debris flows have increased tremendously due to the extreme weather and the Wenchuan earthquake on May 12, 2008. Previous studies focused on the debris flow from gullies damming the mountain streams. In this paper, an equation for the run-out distance of debris flow in the main river is proposed based on the dynamic equation of debris flow at different slopes given by Takahashi. By undertaking field investigations and flume experiments, a new calculation method of the volume of debris flow damming large river is obtained. Using the percolation theory and the renormalization group theory it was deduced that the large particles should comprise more than 50% for forming a stable debris flow dam. Hence, the criteria of damming large river by debris flow is presented in terms of run-out distance and grain composition which was then validated through the event of damming river by debris flow at Gaojia gully, the upper reaches of the Minjiang River, Sichuan, China, on July 3, 2011.展开更多
A new equation is proposed for the design of armor units on protected river banks under the combined action of ship-induced waves and river flow.Existing observed field and experimental data in the literature have bee...A new equation is proposed for the design of armor units on protected river banks under the combined action of ship-induced waves and river flow.Existing observed field and experimental data in the literature have been examined and a valuable database has been developed.Different conditions,including the river water depth,flow velocity,river bank slope,Froude number,wave height,wave period,and wave obliquity have been considered.Results from an empirical equation (Bhowmik,1978) that only considers the maximum wave height and river bank slope have been compared with the results calculated by the newly developed equation.Calculated results have also been verified against field data.Results show that not only the maximum wave height and river bank slope but also the water depth,flow velocity,wave length,wave obliquity,and wave period are important parameters for predicting the mean diameter of the armor units,highlighting the multivariate behavior of protecting the river bank in the presence of ship-induced waves and river flow velocity.展开更多
文摘Since time immemorial,humans have made their homes alongside waterways,and mighty rivers have been the cradles of human civilization.However,as society has evolved at an ever-accelerating pace,our relationship with these life-giving streams has shifted dramatically,from one of reverence to exploitation.Now,the profound water crisis has compelled humanity to reexamine its connection with rivers.
基金supported by the Zhejiang Natural Science Foundation of China(Grant No.LY17A010019)the second author is supported by the Zhejiang Natural Science Foundation of China(Grant No.LY20A010023)+1 种基金the National Natural Science Foundation of China(Grant No.12071106)the third author is supported by the Grant-in-Aid for Scientific Research(C)17K05315,Japan.
文摘In this short note,we are concerned with the global existence and stability of solutions to the river flow system.We introduce a new technique to set up a relation between the Riemann invariants and the finite mass to obtain a time-independent,bounded solution for any adiabatic exponent.The global existence of solutions was known long ago[Klingenberg and Lu in Commun.Math.Phys.187:327-340,1997].However,since the uncertainty of the function b(x),which corresponds physically to the slope of the topography,the L∞estimates growed larger with respect to the time variable.As a result,it does not guarantee the stability of solutions.By employing a suitable mathematical transformation to control the slope of the topography by the friction and the finite mass,we prove the uniformly bounded estimate with respect to the time variable.This means that our solutions are stable.
文摘River flow in the Songwe sub-basin is predicted to alter due to climate change, which would have an impact on aquatic habitats, infrastructure, and people’s way of life. Therefore, the influence of climate change should be taken into account when making decisions about the sustainable management of water resources in the sub-basin. This study looked into how river discharge would react to climate change in the future. By contrasting hydrological characteristics simulated under historical climate (1981-2010) with projected climate (2011-2040, 2041-2070, and 2071-2100) under two emission scenarios, the effects of climate change on river flow were evaluated (RCP 4.5 and RCP 8.5). The ensemble average of four CORDEX regional climate models was built to address the issue of uncertainty introduced by the climate models. The SWAT model was force-calibrated using the results from the generated ensemble average for the RCP 4.5 and RCP 8.5 emission scenarios in order to mimic the river flow during past (1981-2010) and future (2011-2100) events. The increase in river flows for the Songwe sub-basin is predicted to be largest during the rainy season by both the RCP 4.5 and RCP 8.5 scenarios. Under RCP 8.5, the abrupt decrease in river flow is anticipated to reach its maximum in March 2037, when the discharge will be 44.84 m<sup>3</sup>/sec, and in March 2027, when the discharge will be 48 m<sup>3</sup>/sec. The extreme surge in river flow will peak, according to the RCA4, in February 2023, in April 2083 under RCP 4.5, and, according to the CCLM4 and RCA4, in November 2027 and November 2046, respectively. The expected decrease and increase in river flow throughout both the dry and wet seasons may have an impact on the management of the sub-water basin’s resources, biodiversity, and hydraulic structures. The right adaptations and mitigation strategies should be adopted in order to lessen the negative consequences of climate change on precipitation, temperature, and river flow in the sub-basin.
文摘The filling of rivers generated by carried solid deposit is a factor for the raising of height of rivers and thus activates the floods and inundations. The quantification of carried solid flow charges through their characterization and the analysis of hydrosedimentary dynamics is the second step of the investigation of the solid flow transport in the Mono river. This study aims to quantify the volume of trapped sediments in function of the variation of the geometry of the shape of sections of the river depending of the slope and the flow rate therefore to evaluate the capacity of transport of eroded solid flows of a watercourse from upstream to downstream. Consequently, the decreasing percentage of deposited alluvium from upstream to downstream is calculated along Mono river. Thus the drawn granulometric curve of sediments and the determinate granulometric characteristics of sediments permit to quantify the carried sediment charges at each chosen section with Engelund-Hansen model in Mono river.
文摘It is well known that, in most cases, soil water doesn't move in the form of laminar flow as described by Darcy law. Only when Reynolds number ( Re ) is no more than 10, does water movement follow Darcy law. A soil profile with 2 9 m long and 2 13 2 60 m deep was excavated on a lower slope located at Zigui County, Hubei Province, China. Field observation found that soil pipes were mainly distributed in the transient layer between horizon B with higher degree of granite weathering and horizon C with lower degree of granite weathering. At the foot of the slope, about 5 7 soil pipes per meter were observed along the vertical direction of the slope. The observed results, obtained by continuous observation of soil pipes and pipe flow processes at granite slope for many rainfall events, indicate that the relationship between velocity of pipe flow and hydraulic gradient along the pipe is parabolic rather than linear. Based on the investigated data of soil, landform, and land use etc., combined with observed data of pipe flow derived from many rainfall events, a pipe flow model was developed. For velocity V p, discharge Q p of pipe flow and radius r of soil pipe, great similarity was found between simulated and observed values. Particularly, the simulated length of soil pipes reflects the great difference among soil pipes as a result of its different position in the soil profile. The length values of 4 soil pipes were estimated to be 98 1%, 27 6%, 11 0% and 3 0% of the longest distance of the catchment, respectively. As a special case of water movement, soil pipe flow follows Darcy Weisbach law. Discharge of pipe flow is much greater than infiltration discharge in common. Only when the depth of groundwater is more than the diameter of soil pipe and water layer submerges soil pipes during rainfall, may pipe flow occur. Under these circumstances, discharge of pipe flow is directly proportional to the depth of groundwater.
基金Supported by Social Science Fund in Jiangsu Province " Study on evolution of Yellow River s flooding into the Huihe River and natural systems in Northern Jiangsu" (09LSA001)~~
文摘Based on the historical records,the flood disasters in Xu-Huai River Basin caused by southward flow of Yellow River were studied,while its effects on Xu-Huai regional economic,transportation and eco-environment were also highlighted,and finally historical natural disasters were presented in this study.
文摘Some novel techniques of computational fluid dynamics are used to establish a mathematical model for the open diversion channel with two embankments in river blocking.The technique of boundary fitted coordinate system is used to overcome the difficulties resulting from the complicated shapes of natural river boundaries;the method of alternating direction implicit finite difference scheme is used to solve the partial differential equations in the transformed plane;and the technique of moving boundary is used to deal with the river bed exposed to water surface.This model has been used to predict the flow characteristics in the blocking of the Yangtz river in the Three Gorge Project (TGP).Comparison between the computed and experimental data shows a satisfactory agreement.
基金Supported by National Major Science and Technology Projects(2009ZX07317-006)National Major Science and Technology Projects(2009ZX07317-009)~~
文摘[Objective]The activities of urease and phosphatase in integrated vertical flow constructed wetland and purification effect of black and malodorous river were studied.[Method]Honeycomb stone and soft filler were used as matrix,the biological grid integrated vertical flow constructed wetland system was built to strengthen treatment for black and malodorous river,and the activities of urease and phosphatase of two fillers in different functional areas of constructed wetland were tested to study the film formation property of two fillers in different functional areas.[Result]Both urease and phosphatase activities on biofilm of soft filler were significantly higher than on biofilm of honeycomb stone filler;indicating that choosing soft filler was more advantageous to the growth of biofilm;and urease activity had significant correlation with total nitrogen removal rate,while phosphatase activity had no significant correlation with total phosphorus removal rate.[Conclusion]This study provided evidences for utilizing the activities of urease and phosphatase to evaluate the purification effect of black and malodorous river and choose appropriate filler.
文摘Investigations from August, 1985 to July , 1986 showed that the high concentration area of PO4-P , SiO3-Si and NO3-N gradually reduced with the reduction of the area of the Changjiang River diluted water from summer, autumn to winter , and that the seasonal distributions and variations of the nutrients concentrations were mainly controlled by the river flow and were also related to the growth and decline of phytoplankton . The conservation of SiO3-Si and NO3-N in the estuary in the flood season was poorer than that in the dry season .. The behaviour of PO4-P in the estuary shows that aside from -biological removal, buffering of PCU-P is possible in the estuary . The highest monthly average concentrations and annual average concentrations in the river mouth were respectively 0.88 and 0.57 umol/L for PO4-P,191.5 and 96.2 umol/L for SiO3-Si, and 81.6 and 58.6 umol/L for NOs-N . The Changjiang’s annual transports of PO4-P , SiO3-Si and NO3-N to the sea were about 1.4×104tons , 204.4×104 tons and 63.
基金The National Natural Sciences Foundation of China (No. 50239020)
文摘In order to realistically reflect the difference between regional water demand for instream flow and river ecological water demand as well as to resolve the problem that water demand may be counted repeatedly, a concept of regional water demand for minimum instream flow have been developed. The concept was used in the process of determining river functions and calculating ecological water demand for a river. The Yellow River watershed was used to validate the calculation methodology for regional water demand. CaIculation results indicate that there are significant differences in water demands among the different regions. The regional water demand at the downstream of the Yellow River is the largest about 14.893 × 10^9 m^3/a. The regional water demand of upstream, Lanzhou-Hekou section is the smallest about -5.012 × 10^9 m^3/a. The total ecological water demand of the Yellow River Basin is 23.06 × 10^9 m^3/a, about the 39% of surface water resources of the water resources should not exceed 61% in the Yellow River Basin. Yellow River Basin. That means the maximum available surface The regional river ecological water demands at the Lower Section of the Yellow River and Longyangxia-Lanzhou Section exceed the surface water resources produced in its region and need to be supplemented from other regions through the water rational planning of watershed water resources. These results provides technical basis for rational plan of water resources of the Yellow River Basin.
基金the National Natural Science Foundation of China (40671153)the Scientific Research Fund of Hunan Provincial Education Department (05C175) the Knowledge Innovation Program of Chinese Academy Sciences (KZCX2- YW-302)
文摘This paper discussed theory and methodologies of debris-flow risk assessment and established an implementation process according to indicators of debris-flow hazard degree, vulnerability, risk degree, etc. Among these methodologies, historical and potential hazard degree was comprehensively considered into hazard assessment and hazard index was presented to indicate the debris-flow hazard degree. Regarding debris-flow vulnerability assessment, its statistical data and calculating procedure were based on the hazard-degree regionalization instead of administrative divisions, which improved the assessing scientificity and precision. These quantitative methodologies integrated with Geography Information System (GIS) were applied to the risk assessment of debris flows in the upper reach of Yangtze River. Its results were in substantial agreement on investigation data and the actual distribution of debris flows, which showed that these principles and methodologies were reasonable and feasible and can provide basis or reference for debris-flow risk assessment and disaster management.
基金This work is supported by the National Key Research and Development Program of China(2016YFC0502205)the National Natural Science Foundation of China(51425902).
文摘Conservation of endangered or economic fish and control of invasive fish is a great challenge of hydraulic engineering worldwide.Flow velocity has been recognized to affect the spawning of fishes delivering drifting eggs in rivers.However,solid scientific supports and associated mechanisms to establish quantitative relations between flow velocity and fish reproduction,taking into account spawning,fertilizing,hatching,as well as surviving,are lacking.In this paper,we quantified the relationship between flow velocity and reproduction of Chinese carps through both lab and field experiments.The results showed that a minimum velocity was required to trigger Hypophthalmichthys molitrix(H.molitrix)releasing eggs,and a velocity range was preferred to sustain spawning activity.However,the embryo incubation and larvae development of H.molitrix were found to be inhibited with the increase in flow velocity.Considering the requirements of spawning and hatching,as well as larvae surviving,an optimized flow velocity processes was identified for the reproduction of H.molitrix in rivers.These findings were of great significance to the adaptive operation of reservoirs to create reasonable and precise ecological flows for managing fish reproduction,as shown by the promising results in the engineering application to the Three Gorges Reservoir.
基金the support of the UNESCO HELP programthe support of K.C.Wong Education Foundation,Hong Kong
文摘Rapid population growth and artificial oasis enlargement did pose great threat to the natural riparian ecosystems of Tarim River and caused seriously ecological deterioration and greater desertification of the Tarim River Basin in the second half of 20 century. Restoration of the endangered riparian ecosystem requires that environmental flow should be restored through restricted and uncontrolled flow diversion irrigation in tributary areas. Implementation of such restriction needs further the basin-wide reallocation of water resources through a set of engineering and non-engineering measures taken to ensure the water requirement in the tributary and maintain effective flows in Tarim River. As one of evolving HELP (Hydrology for Environment, Life and Policy) basins, the article first presents an overview of hydrology, socio-economic development and ecosystem evolution of the Tarim River Basin. Then, those measures for restoring and maintaining environmental flow are reviewed and analyzed along with its applicability and validity. The issues emerging in implementing those measures are also explored, and then the conclusions were summarized. Lessons learned could provide a good example for other basins under similar conditions.
基金jointly funded by the 135 Strategic Program of the Institute of Mountain Hazards and Environment,CAS(Grant No.SDS135-1703)the National Key Basic Research Program of China(973 program)(Grant No.2015CB452702)
文摘An increase in extreme precipitation events due to future climate change will have a decisive influence on the formation of debris flows in earthquake-stricken areas. This paper aimed to describe the possible impacts of future climate change on debris flow hazards in the Upper Minjiang River basin in Northwest Sichuan of China, which was severely affected by the 2008 Wenchuan earthquake. The study area was divided into 1285 catchments, which were used as the basic assessment units for debris flow hazards. Based on the current understanding of the causes of debris flows, a binary logistic regression model was used to screen key factors based on local geologic, geomorphologic, soil,vegetation, and meteorological and climatic conditions. We used the weighted summation method to obtain a composite index for debris flow hazards, based on two weight allocation methods: Relative Degree Analysis and rough set theory. Our results showed that the assessment model using the rough set theory resulted in better accuracy. According to the bias corrected and downscaled daily climate model data, future annual precipitation(2030-2059) in the study area are expected to decrease, with an increasing number of heavy rainfall events. Under future climate change, areas with a high-level of debris flow hazard will be even more dangerous, and 5.9% more of the study area was categorized as having a high-level hazard. Future climate change will cause an increase in debris flow hazard levels for 128 catchments, accounting for 10.5% of the total area. In the coming few decades, attention should be paid not only to traditional areas with high-level of debris flow hazards, but also to those areas with an increased hazard level to improve their resilience to debris flow disasters.
文摘This paper deals with time series of the Yellow River daily flows at Tongguan hydrological station, from the year 2000 to 2005. Power spectrum analysis and statistical moment scaling function on a range of scales revealed scaling qualities of the data. The partition function, which displayed a convex curvature, and the generalized dimension function showed that multifractality is presented. The singularity spectrum, which is single-humped, has shown strong multifractality degree.
基金supported by the National Natural Science Foundation of China(Grants No.41006046and51061130545)the Special Fund for Public Welfare Industry of Ministry of Water Resources of China(GrantNo.201301072)+1 种基金the New Teachers'Fund for Doctor Stations of the Ministry of Education of China(GrantNo.20100094120008)the Special Fund of State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering of Hohai University(Grants No.2009586712and2009585812)
文摘Flow discharge from the river basin into the sea has severe impacts on the immediate vicinity of river channels, estuaries, and coastal areas. This paper analyzes the features and temporal trends of flow discharge at Pearl River's three main gauge stations: the Wuzhou, Shijiao, and Boluo gauge stations on the West River, North River, and East River, respectively. The results show no significant trend in annual mean discharge into the sea at the three gauge stations. Changes of monthly mean discharge at the Boluo Gauge Station are evident, and a majority of monthly discharge in the dry season displays significant increasing trends. Furthermore, changes of the extreme discharge are quite evident, with a significant decreasing trend in the annual maximum discharge and a significant increasing trend in the minimum one. The significantly decreasing ratio of the flood discharge to annual discharge at the Boluo Gauge Station indicates that the flow discharge from the East River has increased in the dry season and decreased in the flood season since the construction of dams and reservoirs. At the other two gauge stations, the Wuzhou and Shijiao gauge stations, the seasonal discharge generally does not change perceptibly. Human impacts, especially those pertaining to reservoir and dam construction, appear to be responsible for the seasonal variation of flow discharge. The results indicate that the construction and operation of dams and reservoirs in the East River have a greater influence on flow discharge, which can well explain why the seasonal variation of flow discharge from the East River is more evident.
基金supported by the National Basic Research and Development Program of China (Grant No. 973:2011CB409902)the Key Project of National Natural Science Foundation of China (Grant No. 41172321)Southwest Jiaotong University Doctor Innovation Fund
文摘The frequency and extent of debris flows have increased tremendously due to the extreme weather and the Wenchuan earthquake on May 12, 2008. Previous studies focused on the debris flow from gullies damming the mountain streams. In this paper, an equation for the run-out distance of debris flow in the main river is proposed based on the dynamic equation of debris flow at different slopes given by Takahashi. By undertaking field investigations and flume experiments, a new calculation method of the volume of debris flow damming large river is obtained. Using the percolation theory and the renormalization group theory it was deduced that the large particles should comprise more than 50% for forming a stable debris flow dam. Hence, the criteria of damming large river by debris flow is presented in terms of run-out distance and grain composition which was then validated through the event of damming river by debris flow at Gaojia gully, the upper reaches of the Minjiang River, Sichuan, China, on July 3, 2011.
文摘A new equation is proposed for the design of armor units on protected river banks under the combined action of ship-induced waves and river flow.Existing observed field and experimental data in the literature have been examined and a valuable database has been developed.Different conditions,including the river water depth,flow velocity,river bank slope,Froude number,wave height,wave period,and wave obliquity have been considered.Results from an empirical equation (Bhowmik,1978) that only considers the maximum wave height and river bank slope have been compared with the results calculated by the newly developed equation.Calculated results have also been verified against field data.Results show that not only the maximum wave height and river bank slope but also the water depth,flow velocity,wave length,wave obliquity,and wave period are important parameters for predicting the mean diameter of the armor units,highlighting the multivariate behavior of protecting the river bank in the presence of ship-induced waves and river flow velocity.