Due to the conflict between huge amount of map data and limited network bandwidth, rapid trans- mission of vector map data over the Internet has become a bottleneck of spatial data delivery in web-based environment. T...Due to the conflict between huge amount of map data and limited network bandwidth, rapid trans- mission of vector map data over the Internet has become a bottleneck of spatial data delivery in web-based environment. This paper proposed an approach to organizing and transmitting multi-scale vector river network data via the Internet progressively. This approach takes account of two levels of importance, i.e. the importance of river branches and the importance of the points belonging to each river branch, and forms data packages ac- cording to these. Our experiments have shown that the proposed approach can reduce 90% of original data while preserving the river structure well.展开更多
The Pearl River Estuary(PRE) is located at the onshore-offshore transition zone between South China and South China Sea Basin, and it is of great significant value in discussing tectonic relationships between South Ch...The Pearl River Estuary(PRE) is located at the onshore-offshore transition zone between South China and South China Sea Basin, and it is of great significant value in discussing tectonic relationships between South China block and South China Sea block and seismic activities along the offshore active faults in PRE. However, the researches on geometric characteristics of offshore faults in this area are extremely lacking. To investigate the offshore fault distribution and their geometric features in the PRE in greater detail, we acquired thirteen seismic reflection profiles in 2015. Combining the analysis of the seismic reflection and free-air gravity anomaly data, this paper revealed the location, continuity, and geometry of the littoral fault zone and other offshore faults in PRE. The littoral fault zone is composed of the major Dangan Islands fault and several parallel, high-angle, normal faults, which mainly trend northeast to northeast-to-east and dip to the southeast with large displacements. The fault zone is divided into three different segments by the northwest-trending faults. Moreover, the basement depth around Dangan Islands is very shallow, while it suddenly increases along the islands westward and southward. These has resulted in the islands and neighboring areas becoming the places where the stress accumulates easily. The seismogenic pattern of this area is closely related to the comprehensive effect of intersecting faults together with the low velocity layer.展开更多
From the viewpoint of systems science, this article takes Xiaosha River artificial wetland under planning and construction as object of study based on the systems theory and takes the accomplished and running project ...From the viewpoint of systems science, this article takes Xiaosha River artificial wetland under planning and construction as object of study based on the systems theory and takes the accomplished and running project of Xinxuehe artificial wetland as reference. The virtual data of quantity and quality of inflow and the quality of outflow of Xiaosha River artificial wetland are built up according to the running experience, forecasting model and theoretical method of the reference project as well as the comparison analysis of the similarity and difference of the two example projects. The virtual data are used to study the building of forecasting model of BP neural network of Xiaosha River artificial wetland.展开更多
Successful modeling of hydroenvironmental processes widely relies on quantity and quality of accessible data,and noisy data can affect the modeling performance.On the other hand in training phase of any Artificial Int...Successful modeling of hydroenvironmental processes widely relies on quantity and quality of accessible data,and noisy data can affect the modeling performance.On the other hand in training phase of any Artificial Intelligence(AI) based model,each training data set is usually a limited sample of possible patterns of the process and hence,might not show the behavior of whole population.Accordingly,in the present paper,wavelet-based denoising method was used to smooth hydrological time series.Thereafter,small normally distributed noises with the mean of zero and various standard deviations were generated and added to the smooth time series to form different denoised-jittered data sets.Finally,the obtained pre-processed data were imposed into Artificial Neural Network(ANN) and Adaptive Neuro-Fuzzy Inference System(ANFIS)models for daily runoff-sediment modeling of the Minnesota River.To evaluate the modeling performance,the outcomes were compared with results of multi linear regression(MLR) and Auto Regressive Integrated Moving Average(ARIMA)models.The comparison showed that the proposed data processing approach which serves both denoising and jittering techniques could enhance the performance of ANN and ANFIS based runoffsediment modeling of the case study up to 34%and 25%in the verification phase,respectively.展开更多
The Yellow River,at 5,464 kilometers,is the second longest in China,next to the Changjiang(Yangtze River).The Yellow River's headwaters originate in western Qinghai Province and flow eastward through an area of 75...The Yellow River,at 5,464 kilometers,is the second longest in China,next to the Changjiang(Yangtze River).The Yellow River's headwaters originate in western Qinghai Province and flow eastward through an area of 750,000 square kilometers in Sichuan,Gansu,Ningxia,Inner Mon-golia,Shaanxi,Shanxi and Henan into the Bohai Sea in northern Shandong.The river valley area has a total population of 93.83 million(1990)and 12.2 million hectares of arable land.展开更多
Egypt is a highly populated country of about 85 million inhabitants that are concentrated on the Nile Delta and on the flood plain of the Nile River. More than 90% of this population relies on the Nile River in their ...Egypt is a highly populated country of about 85 million inhabitants that are concentrated on the Nile Delta and on the flood plain of the Nile River. More than 90% of this population relies on the Nile River in their water demand for domestic use. Currently, Egypt is facing a problem with the trans-boundary water budget coming from the Nile basin. This urges for managing the water quantity and quality to secure the water needs. This paper discusses the potential use of airborne hyperspectral data for water quality management in the form of detecting the oil contamination in the Nile River in integration with in-situ measurements including ASD spectroradiometer and eco-sounder multi-probe devices. The eco-sounder multi-probe device measured most of the water quality parameters and detected the existence of oil contamination at 1200 bb downstream of the study area. The airborne hyperspectral images were analyzed and calibrated with the spectral library determined from the in-situ spectroradiometer to map the patches of the oil contamination. The details of the findings and learning lessons are fully discussed in the paper.展开更多
Based on the research on the diffusion of suspended sediments discharged outside of Yangtze River estuary and the landuse of Shanghai using Landsat MSS images in several years, the authors analysed the characteristics...Based on the research on the diffusion of suspended sediments discharged outside of Yangtze River estuary and the landuse of Shanghai using Landsat MSS images in several years, the authors analysed the characteristics of TM CCT data of Shanghai scene, pointed out concrete range of maximum turbidity and growth of urban boundary of Shanghai through the information extraction.The feature vector combination method is used in the research process. The result is getting nice.展开更多
文摘Due to the conflict between huge amount of map data and limited network bandwidth, rapid trans- mission of vector map data over the Internet has become a bottleneck of spatial data delivery in web-based environment. This paper proposed an approach to organizing and transmitting multi-scale vector river network data via the Internet progressively. This approach takes account of two levels of importance, i.e. the importance of river branches and the importance of the points belonging to each river branch, and forms data packages ac- cording to these. Our experiments have shown that the proposed approach can reduce 90% of original data while preserving the river structure well.
基金supported by the National Natural Science Foundation of China(Nos.41506046,41376060,41706054)the Opening Foundation of Key Laboratory of Ocean and Marginal Sea Geology,CAS(No.MSGL15-05)+1 种基金WPOS(No.XDA11030102-02)the Strategic Priority Research Program of the Chinese Academy of Sciences(No.XDA13010101)
文摘The Pearl River Estuary(PRE) is located at the onshore-offshore transition zone between South China and South China Sea Basin, and it is of great significant value in discussing tectonic relationships between South China block and South China Sea block and seismic activities along the offshore active faults in PRE. However, the researches on geometric characteristics of offshore faults in this area are extremely lacking. To investigate the offshore fault distribution and their geometric features in the PRE in greater detail, we acquired thirteen seismic reflection profiles in 2015. Combining the analysis of the seismic reflection and free-air gravity anomaly data, this paper revealed the location, continuity, and geometry of the littoral fault zone and other offshore faults in PRE. The littoral fault zone is composed of the major Dangan Islands fault and several parallel, high-angle, normal faults, which mainly trend northeast to northeast-to-east and dip to the southeast with large displacements. The fault zone is divided into three different segments by the northwest-trending faults. Moreover, the basement depth around Dangan Islands is very shallow, while it suddenly increases along the islands westward and southward. These has resulted in the islands and neighboring areas becoming the places where the stress accumulates easily. The seismogenic pattern of this area is closely related to the comprehensive effect of intersecting faults together with the low velocity layer.
文摘From the viewpoint of systems science, this article takes Xiaosha River artificial wetland under planning and construction as object of study based on the systems theory and takes the accomplished and running project of Xinxuehe artificial wetland as reference. The virtual data of quantity and quality of inflow and the quality of outflow of Xiaosha River artificial wetland are built up according to the running experience, forecasting model and theoretical method of the reference project as well as the comparison analysis of the similarity and difference of the two example projects. The virtual data are used to study the building of forecasting model of BP neural network of Xiaosha River artificial wetland.
基金financially supported by a grant from Research Affairs of Najafabad Branch,Islamic Azad University,Iran
文摘Successful modeling of hydroenvironmental processes widely relies on quantity and quality of accessible data,and noisy data can affect the modeling performance.On the other hand in training phase of any Artificial Intelligence(AI) based model,each training data set is usually a limited sample of possible patterns of the process and hence,might not show the behavior of whole population.Accordingly,in the present paper,wavelet-based denoising method was used to smooth hydrological time series.Thereafter,small normally distributed noises with the mean of zero and various standard deviations were generated and added to the smooth time series to form different denoised-jittered data sets.Finally,the obtained pre-processed data were imposed into Artificial Neural Network(ANN) and Adaptive Neuro-Fuzzy Inference System(ANFIS)models for daily runoff-sediment modeling of the Minnesota River.To evaluate the modeling performance,the outcomes were compared with results of multi linear regression(MLR) and Auto Regressive Integrated Moving Average(ARIMA)models.The comparison showed that the proposed data processing approach which serves both denoising and jittering techniques could enhance the performance of ANN and ANFIS based runoffsediment modeling of the case study up to 34%and 25%in the verification phase,respectively.
文摘The Yellow River,at 5,464 kilometers,is the second longest in China,next to the Changjiang(Yangtze River).The Yellow River's headwaters originate in western Qinghai Province and flow eastward through an area of 750,000 square kilometers in Sichuan,Gansu,Ningxia,Inner Mon-golia,Shaanxi,Shanxi and Henan into the Bohai Sea in northern Shandong.The river valley area has a total population of 93.83 million(1990)and 12.2 million hectares of arable land.
文摘Egypt is a highly populated country of about 85 million inhabitants that are concentrated on the Nile Delta and on the flood plain of the Nile River. More than 90% of this population relies on the Nile River in their water demand for domestic use. Currently, Egypt is facing a problem with the trans-boundary water budget coming from the Nile basin. This urges for managing the water quantity and quality to secure the water needs. This paper discusses the potential use of airborne hyperspectral data for water quality management in the form of detecting the oil contamination in the Nile River in integration with in-situ measurements including ASD spectroradiometer and eco-sounder multi-probe devices. The eco-sounder multi-probe device measured most of the water quality parameters and detected the existence of oil contamination at 1200 bb downstream of the study area. The airborne hyperspectral images were analyzed and calibrated with the spectral library determined from the in-situ spectroradiometer to map the patches of the oil contamination. The details of the findings and learning lessons are fully discussed in the paper.
文摘Based on the research on the diffusion of suspended sediments discharged outside of Yangtze River estuary and the landuse of Shanghai using Landsat MSS images in several years, the authors analysed the characteristics of TM CCT data of Shanghai scene, pointed out concrete range of maximum turbidity and growth of urban boundary of Shanghai through the information extraction.The feature vector combination method is used in the research process. The result is getting nice.