Based on surveyed data from seven coastal sections and the collected data of wind, sea level, tide, nearshore suspended sediment concentration and river flux from adjacent stations, this paper deals with regressive ...Based on surveyed data from seven coastal sections and the collected data of wind, sea level, tide, nearshore suspended sediment concentration and river flux from adjacent stations, this paper deals with regressive correlation between monthly average flat elevation and monthly average figures of the influential factors. All sections except one which is located within the river mouth showed negative correlation between flat elevation and sea level and between flat elevation and tidal range, with correlation coefficients being 0.53- 0.91(-0.77 on the average) in the former condition and 0.56- 0.97 (-0.80 on the average) under the latter. Each of the sections with available suspended sediment concentration (SSC) data shows a positive correlation between flat elevation and SSC, with correlative coefficients being 0.35-0.97 (0.66 on the average). Only two sections (one in the Changjiang River Estuary and the other in the Hangzhou Bay) which are similar to beaches in sediment grain size and slope gradient showed a negative correlation between flat elevation and onshore wind frequency and between flat elevation and average wind velocity, with correlative coefficients being respectively -0.57 and -0.69 (-0.63 on the average) in the former situation and -0.61 and -0.75 (-0.68 on the average) in the latter. Other sections did not show uniform relationship between flat elevation and wind conditions. Due to local marine factors the nearshore SSC in the studied area is negatively correlated with the Changjiang River sediment flux (r=-0.78), which results in false negative correlation between flat elevation and river sediment flux. The paper also gives sediment dynamic and morphodynamic explanation for the above correlations. Sea level rise results in the spread of breaker zone from subtidal area to intertidal area and then increases the intertidal water energy. The larger the tidal range, the stronger the tide currents and the easier for the flat to be eroded. The higher the SSC of flood water, the easier for the sediment to deposit down. Because of correlations among the influential factors, it is difficult to give the prime one which dominates the erosion and accretion processes in tidal flats.展开更多
Sediment samples were collected in the intertidal zone of the Dagu River Estuary, Jiaozhou Bay, China in April,July and October 2010 and February 2011 for examining seasonal dynamics of meiofaunal distribution and the...Sediment samples were collected in the intertidal zone of the Dagu River Estuary, Jiaozhou Bay, China in April,July and October 2010 and February 2011 for examining seasonal dynamics of meiofaunal distribution and their relationship with environmental variables. A total of ten meiofaunal taxa were identified, including free-living marine nematodes, benthic copepods, polychaetes, oligochaetes, bivalves, ostracods, cnidarians, turbellarians,tardigrades and other animals. Free-living marine nematodes were the most dominant group in both abundance and biomass. The abundances of marine nematodes were higher in winter and spring than those in summer and autumn. Most of the meiofauna distributed in the 0–2 cm sediment layer. The abundance of meiofauna in hightidal zone was lower than those in low-tidal and mid-tidal zones. Results of correlation analysis showed that Chlorophyll a was the most important factor to influence the seasonal dynamics of the abundance, biomass of meiofauna and abundances of nematodes and copepods. CLUSTER analysis divided the meiofaunal assemblages into three groups and BIOENV results indicated that salinity, concentration of organic matter, sediment sorting coefficient and sediment median diameter were the main environmental factors influencing the meiofaunal assemblages.展开更多
文摘Based on surveyed data from seven coastal sections and the collected data of wind, sea level, tide, nearshore suspended sediment concentration and river flux from adjacent stations, this paper deals with regressive correlation between monthly average flat elevation and monthly average figures of the influential factors. All sections except one which is located within the river mouth showed negative correlation between flat elevation and sea level and between flat elevation and tidal range, with correlation coefficients being 0.53- 0.91(-0.77 on the average) in the former condition and 0.56- 0.97 (-0.80 on the average) under the latter. Each of the sections with available suspended sediment concentration (SSC) data shows a positive correlation between flat elevation and SSC, with correlative coefficients being 0.35-0.97 (0.66 on the average). Only two sections (one in the Changjiang River Estuary and the other in the Hangzhou Bay) which are similar to beaches in sediment grain size and slope gradient showed a negative correlation between flat elevation and onshore wind frequency and between flat elevation and average wind velocity, with correlative coefficients being respectively -0.57 and -0.69 (-0.63 on the average) in the former situation and -0.61 and -0.75 (-0.68 on the average) in the latter. Other sections did not show uniform relationship between flat elevation and wind conditions. Due to local marine factors the nearshore SSC in the studied area is negatively correlated with the Changjiang River sediment flux (r=-0.78), which results in false negative correlation between flat elevation and river sediment flux. The paper also gives sediment dynamic and morphodynamic explanation for the above correlations. Sea level rise results in the spread of breaker zone from subtidal area to intertidal area and then increases the intertidal water energy. The larger the tidal range, the stronger the tide currents and the easier for the flat to be eroded. The higher the SSC of flood water, the easier for the sediment to deposit down. Because of correlations among the influential factors, it is difficult to give the prime one which dominates the erosion and accretion processes in tidal flats.
基金The National Natural Science Foundation of China under contract No.41576135the Student Research Development Program of Ocean University of China(OUC-SRDP)under contract No.101201051
文摘Sediment samples were collected in the intertidal zone of the Dagu River Estuary, Jiaozhou Bay, China in April,July and October 2010 and February 2011 for examining seasonal dynamics of meiofaunal distribution and their relationship with environmental variables. A total of ten meiofaunal taxa were identified, including free-living marine nematodes, benthic copepods, polychaetes, oligochaetes, bivalves, ostracods, cnidarians, turbellarians,tardigrades and other animals. Free-living marine nematodes were the most dominant group in both abundance and biomass. The abundances of marine nematodes were higher in winter and spring than those in summer and autumn. Most of the meiofauna distributed in the 0–2 cm sediment layer. The abundance of meiofauna in hightidal zone was lower than those in low-tidal and mid-tidal zones. Results of correlation analysis showed that Chlorophyll a was the most important factor to influence the seasonal dynamics of the abundance, biomass of meiofauna and abundances of nematodes and copepods. CLUSTER analysis divided the meiofaunal assemblages into three groups and BIOENV results indicated that salinity, concentration of organic matter, sediment sorting coefficient and sediment median diameter were the main environmental factors influencing the meiofaunal assemblages.