Surface snow samples of different altitudes and snow pit samples were collected from Glacier No. 1 at the Urumqi River Head, Tianshan. Denaturing gradient gel electrophoresis (DGGE) was used to examine the diversity...Surface snow samples of different altitudes and snow pit samples were collected from Glacier No. 1 at the Urumqi River Head, Tianshan. Denaturing gradient gel electrophoresis (DGGE) was used to examine the diversity and temporal-spatial characteristics of eukaryotic microorganisms with different altitudes and depths. Results show that the eukaryotic microorganisms belong to four kingdoms--Viridiplantae, Fungi, Amoebozoa, and Alveolata. Among them, algae (especially Chlamydomonadales) were the dominant group. The diversity of eukaryotic microorganisms was negatively correlated with altitude and accumulation time, but positively correlated with 8180 values. These results indicate that temperature is the main factor for the temporal-spatial change of eukaryotic microorganisms, and the diversity of eukaryotic microorganisms could be an index for climate and environmental change.展开更多
The long term existence of a low-head dam in the river channel significantly affects river geomorphology and river ecosystem. Because more and more low-head dam structures have deteriorated in recent years, the attent...The long term existence of a low-head dam in the river channel significantly affects river geomorphology and river ecosystem. Because more and more low-head dam structures have deteriorated in recent years, the attention for low-head dam removal is increasing as one of alternatives for river restoration. Thus, this study intends to investigate the impacts of low-head dam removal on river geomorphology and riparian vegetation with developing a quantitative method to predict the changes of river morphology as well as invasion, growth, expansion and destruction of riparian vegetation after a low-head dam removal. To verify the numerical simulation model, the low-head dam removal case in Gongreung River was employed with investigation of low-head dam removal responses on river geomorphology and riparian vegetation. Following the low-head dam removal, the results of monitoring and numerical simulation indicated that new sand bars has formed as well as increasing the extent of existing sand bars in the upstream of the low-head dam. The sand bars have been colonized in a year after the low-head dam removal by grass type plants. After a decade to several decades, the riparian vegetation in sand bars often developed to tree type plants in several low-head dam removal cases. As other cases, Gongreung River also showed the growth of tree type plants in 5 years after the removal.展开更多
Ice core δ\{\}\+\{18\}O records from the No.1 glacier at the head of the rümqi River were used to characterize the relationship between δ\{\}\+\{18\}O and contemporaneous surface air temperature (Ta) nearby the...Ice core δ\{\}\+\{18\}O records from the No.1 glacier at the head of the rümqi River were used to characterize the relationship between δ\{\}\+\{18\}O and contemporaneous surface air temperature (Ta) nearby the Daxigou Meteorological Station (3539 m above sea level, ~2km away from the ice core drilling site). Although the ice core records of annually averaged δ\{\}\+\{18\}O are positively correlated with contemporaneous surface air temperature, especially summer air temperature, the correlation is less significant than that for the precipitation samples due to depositional and post\|depositional modification processes. However, the climatological significance of the ice core δ\{\}\+\{18\}O records can be still preserved to a certain degree, which might extend the application of high altitude and sub\|tropical ice core δ\{\}\+\{18\}O records to paleoclimate reconstruction.展开更多
The results of water sample analyses and investigation in the head area of the Changjiang River reveal that the characteristics of hydrochemistry of the river vary with drainage basins. In the drainage basin of the Tu...The results of water sample analyses and investigation in the head area of the Changjiang River reveal that the characteristics of hydrochemistry of the river vary with drainage basins. In the drainage basin of the Tuotuo River, the mineral concentration of water is generally high, ions of Cl and Na+ are obviously dominant. The water tends to be salty, and the type of hydrochemistry is rather complex. In the drainage basin of the Dam River, the mineral concentration is mainly in a low and middle level, ions of HCO3- and Ca2+ are higher than others, and the type of hydrochemistry is relatively simple. The ground water in deep layers plays an important role in recharging surface water, and the stable recharging results in little change in chemical composition of surface water.展开更多
Heavy floods occur frequently in the Senegal River Basin, causing catastrophic flooding downstream the river rating station of Bakel. Anticipating the occurrence of such phenomena is the only way to reduce the resulti...Heavy floods occur frequently in the Senegal River Basin, causing catastrophic flooding downstream the river rating station of Bakel. Anticipating the occurrence of such phenomena is the only way to reduce the resulting damages. Flood forecasting is a necessity. Flood forecasting plays also an important role in the implementation of flood management scenarios and in the protection of hydro electric structures. Many methods are applied. The most complete are based on the conservation laws of physics governing the free surface flow. These methods need a complete description of the geometry of the river and their implementation requires also huge investments. In practice the river basin can be considered as a system of inputs-outputs related by a transfer function. In this paper the authors first used a multiple linear regression model with constant parameters estimated by the ordinary least square method to simulate the propagation of the floods in the upstream part of the Senegal river basin. The authors then apply statistical and graphical criteria of goodness-of-fit to test the suitability of this model. Three procedures of parameters updating have then been added to this linear model: the Kalman filter method, the recursive least square method, and the stochastic gradient method The criteria of goodness-of-fit used above have shown that the stochastic gradient method, although more rudimentary, represents better the flood propagation in the head basin of the Senegal river upstream Bakel. This result is particularly interesting because data influenced by Manantali Dam are used.展开更多
基金supported by National Natural Science Foundation of China (Grant No.30770329,No.40971034,No.30800154)China Postdoctoral Science Fund (Grant No.20080430794)
文摘Surface snow samples of different altitudes and snow pit samples were collected from Glacier No. 1 at the Urumqi River Head, Tianshan. Denaturing gradient gel electrophoresis (DGGE) was used to examine the diversity and temporal-spatial characteristics of eukaryotic microorganisms with different altitudes and depths. Results show that the eukaryotic microorganisms belong to four kingdoms--Viridiplantae, Fungi, Amoebozoa, and Alveolata. Among them, algae (especially Chlamydomonadales) were the dominant group. The diversity of eukaryotic microorganisms was negatively correlated with altitude and accumulation time, but positively correlated with 8180 values. These results indicate that temperature is the main factor for the temporal-spatial change of eukaryotic microorganisms, and the diversity of eukaryotic microorganisms could be an index for climate and environmental change.
文摘The long term existence of a low-head dam in the river channel significantly affects river geomorphology and river ecosystem. Because more and more low-head dam structures have deteriorated in recent years, the attention for low-head dam removal is increasing as one of alternatives for river restoration. Thus, this study intends to investigate the impacts of low-head dam removal on river geomorphology and riparian vegetation with developing a quantitative method to predict the changes of river morphology as well as invasion, growth, expansion and destruction of riparian vegetation after a low-head dam removal. To verify the numerical simulation model, the low-head dam removal case in Gongreung River was employed with investigation of low-head dam removal responses on river geomorphology and riparian vegetation. Following the low-head dam removal, the results of monitoring and numerical simulation indicated that new sand bars has formed as well as increasing the extent of existing sand bars in the upstream of the low-head dam. The sand bars have been colonized in a year after the low-head dam removal by grass type plants. After a decade to several decades, the riparian vegetation in sand bars often developed to tree type plants in several low-head dam removal cases. As other cases, Gongreung River also showed the growth of tree type plants in 5 years after the removal.
文摘Ice core δ\{\}\+\{18\}O records from the No.1 glacier at the head of the rümqi River were used to characterize the relationship between δ\{\}\+\{18\}O and contemporaneous surface air temperature (Ta) nearby the Daxigou Meteorological Station (3539 m above sea level, ~2km away from the ice core drilling site). Although the ice core records of annually averaged δ\{\}\+\{18\}O are positively correlated with contemporaneous surface air temperature, especially summer air temperature, the correlation is less significant than that for the precipitation samples due to depositional and post\|depositional modification processes. However, the climatological significance of the ice core δ\{\}\+\{18\}O records can be still preserved to a certain degree, which might extend the application of high altitude and sub\|tropical ice core δ\{\}\+\{18\}O records to paleoclimate reconstruction.
文摘The results of water sample analyses and investigation in the head area of the Changjiang River reveal that the characteristics of hydrochemistry of the river vary with drainage basins. In the drainage basin of the Tuotuo River, the mineral concentration of water is generally high, ions of Cl and Na+ are obviously dominant. The water tends to be salty, and the type of hydrochemistry is rather complex. In the drainage basin of the Dam River, the mineral concentration is mainly in a low and middle level, ions of HCO3- and Ca2+ are higher than others, and the type of hydrochemistry is relatively simple. The ground water in deep layers plays an important role in recharging surface water, and the stable recharging results in little change in chemical composition of surface water.
文摘Heavy floods occur frequently in the Senegal River Basin, causing catastrophic flooding downstream the river rating station of Bakel. Anticipating the occurrence of such phenomena is the only way to reduce the resulting damages. Flood forecasting is a necessity. Flood forecasting plays also an important role in the implementation of flood management scenarios and in the protection of hydro electric structures. Many methods are applied. The most complete are based on the conservation laws of physics governing the free surface flow. These methods need a complete description of the geometry of the river and their implementation requires also huge investments. In practice the river basin can be considered as a system of inputs-outputs related by a transfer function. In this paper the authors first used a multiple linear regression model with constant parameters estimated by the ordinary least square method to simulate the propagation of the floods in the upstream part of the Senegal river basin. The authors then apply statistical and graphical criteria of goodness-of-fit to test the suitability of this model. Three procedures of parameters updating have then been added to this linear model: the Kalman filter method, the recursive least square method, and the stochastic gradient method The criteria of goodness-of-fit used above have shown that the stochastic gradient method, although more rudimentary, represents better the flood propagation in the head basin of the Senegal river upstream Bakel. This result is particularly interesting because data influenced by Manantali Dam are used.