The water distribution network is an important part of the plain water environment improvement system. To make efficient use of the regional water diversion source, scientifically distribute the water diversion flow a...The water distribution network is an important part of the plain water environment improvement system. To make efficient use of the regional water diversion source, scientifically distribute the water diversion flow and improve the water environment carrying capacity of Haishu Plain, the river network hydrodynamic model is used in this paper to simulate the water intake location, reasonable water quantity and influence range of water transfer in Haishu Plain. The simulation results have high accuracy, which can provide a scientific basis for the scale, water transfer mechanism and project layout of water transfer construction in Haishu Plain and show a strong reference value for the study of water diversion and distribution scheme of coastal plain river network.展开更多
Abrupt changes in freshwater inputs from large rivers usually imply regime shifts in coastal water environments. The influence of a water regulation event on the age of the Yellow River water in the Bohai was modeled ...Abrupt changes in freshwater inputs from large rivers usually imply regime shifts in coastal water environments. The influence of a water regulation event on the age of the Yellow River water in the Bohai was modeled using constituent-oriented age and residence time theory to better understand the change in the environmental function of the hydrodynamic field owing to human activities. The water ages in Laizhou Bay, the central basin, and the Bohai strait are sensitive to water regulation. The surface ages in those areas can decrease by about 300 days, particularly in July, and the age stratification is also strengthened. A water regulation event can result in declines in the water age in early July ahead of declines in the water age under climatological conditions(without the regulation event) by about 1 and 5 months in the central basin and Laizhou Bay, respectively. The change in the coastal circulation due to the water regulation event is the primary reason for the change in the Yellow River water age. The high Yellow River flow rate can enhance the density flow and, therefore, reduce the age of the Yellow River water. The subsequent impact of a single water regulation event can last about 1.0 to 4.0 years in different subregions.展开更多
With the development of hydropower in the karst area of Southwest China, a series of cascade canyon reservoirs have been formed through the construction of dams. Given that hydrodynamic conditions in canyon reservoirs...With the development of hydropower in the karst area of Southwest China, a series of cascade canyon reservoirs have been formed through the construction of dams. Given that hydrodynamic conditions in canyon reservoirs play a pivotal role in controlling the spatiotemporal distribution of physical and chemical properties of the stored water, hydrodynamic characteristics are of great importance in understanding biogeochemical cycles in those reservoirs. To further this understanding, a field campaign was conducted in the Wujiangdu Reservoir of Guizhou Province. It was found that from the reservoir inlet to the front of the dam, velocity(v) was negativelycorrelated and had a logarithmic relationship with distance along the ship track(s) under dry-season flow conditions[v =-0.104 ln(s) + 0.4756]. Analysis showed that dryseason flow velocity had no significant correlation with water temperature, p H, or dissolved oxygen(DO). However, when velocity decreased to 0.061 m/s, water depth increased abruptly. In addition, DO displayed a sudden drop and the trend in p H changed from increasing to decreasing, while water temperature showed an opposite trend, indicating the existence of a transition zone from the river to the reservoir.展开更多
文摘The water distribution network is an important part of the plain water environment improvement system. To make efficient use of the regional water diversion source, scientifically distribute the water diversion flow and improve the water environment carrying capacity of Haishu Plain, the river network hydrodynamic model is used in this paper to simulate the water intake location, reasonable water quantity and influence range of water transfer in Haishu Plain. The simulation results have high accuracy, which can provide a scientific basis for the scale, water transfer mechanism and project layout of water transfer construction in Haishu Plain and show a strong reference value for the study of water diversion and distribution scheme of coastal plain river network.
基金the National Natural Science Foundation of China (Nos. 41176007 and 40706007)
文摘Abrupt changes in freshwater inputs from large rivers usually imply regime shifts in coastal water environments. The influence of a water regulation event on the age of the Yellow River water in the Bohai was modeled using constituent-oriented age and residence time theory to better understand the change in the environmental function of the hydrodynamic field owing to human activities. The water ages in Laizhou Bay, the central basin, and the Bohai strait are sensitive to water regulation. The surface ages in those areas can decrease by about 300 days, particularly in July, and the age stratification is also strengthened. A water regulation event can result in declines in the water age in early July ahead of declines in the water age under climatological conditions(without the regulation event) by about 1 and 5 months in the central basin and Laizhou Bay, respectively. The change in the coastal circulation due to the water regulation event is the primary reason for the change in the Yellow River water age. The high Yellow River flow rate can enhance the density flow and, therefore, reduce the age of the Yellow River water. The subsequent impact of a single water regulation event can last about 1.0 to 4.0 years in different subregions.
基金financially supported by the National Key Research and Development Programme of China(2016YFA0601001)the National Natural Science Foundation of China(Grant Nos.U1612441 and 41473082)CAS"Light of West China"Program
文摘With the development of hydropower in the karst area of Southwest China, a series of cascade canyon reservoirs have been formed through the construction of dams. Given that hydrodynamic conditions in canyon reservoirs play a pivotal role in controlling the spatiotemporal distribution of physical and chemical properties of the stored water, hydrodynamic characteristics are of great importance in understanding biogeochemical cycles in those reservoirs. To further this understanding, a field campaign was conducted in the Wujiangdu Reservoir of Guizhou Province. It was found that from the reservoir inlet to the front of the dam, velocity(v) was negativelycorrelated and had a logarithmic relationship with distance along the ship track(s) under dry-season flow conditions[v =-0.104 ln(s) + 0.4756]. Analysis showed that dryseason flow velocity had no significant correlation with water temperature, p H, or dissolved oxygen(DO). However, when velocity decreased to 0.061 m/s, water depth increased abruptly. In addition, DO displayed a sudden drop and the trend in p H changed from increasing to decreasing, while water temperature showed an opposite trend, indicating the existence of a transition zone from the river to the reservoir.