Bathymetric and land surveys were conducted for the northern Tigris River reach (18 km length) in Baghdad, producing 180 cross sections. A river bed topography map was constructed from these cross sections. The velo...Bathymetric and land surveys were conducted for the northern Tigris River reach (18 km length) in Baghdad, producing 180 cross sections. A river bed topography map was constructed from these cross sections. The velocity profiles and the water discharges were measured using ADCP (Acoustic Doppler Current Profiler) at 16 cross sections, where intensive number of sediment samples was collected to determine riverbed characteristics and sediment transport rate. The three-dimensional morphodynamic model (SSIIM (simulation of sediment movements in water intakes with multiblock option)) was used to simulate the velocity field and the water surface profile along the river reach. The model was calibrated for the water levels, the velocity profiles and the sediment concentration profiles using different combinations of parameters and algorithms. The calibration and the validation results showed good agreement with field measurements, and the model was used to predict the future changes in river hydro-morphology for a period of 14 months. The results of the future predictions showed the Tigris River which behaved like an under-fit river, increases in depositions on the shallow part of the cross section having lower velocity, and the river deepens the incised route to fit its current hydrologic condition leaving the former wide section as a floodplain for the newer river. The net deposition/erosion rate was 67.44 kg/s in average and the total deposition quantity was 2.12 million ton annually. An expansion in the size of current islands was predicted. An indication of the potential threats of the river banks' collapse and the bridge piers' instability was given by high erosion along the thalweg line.展开更多
This article discusses the process of sediment transport and proposes a morphological model to predict the bed evolution in estuaries. The hydrodynamic module is based on an existent model-Depth Integrated Velocity An...This article discusses the process of sediment transport and proposes a morphological model to predict the bed evolution in estuaries. The hydrodynamic module is based on an existent model-Depth Integrated Velocity And Solute Transport (DIVAST) and the wetting and drying method is adopted to deal with the moving boundary. Both cohesive sediment and non-cohesive sediment are taken into consideration in the sediment transport module with the capability of simulating the transport of graded sediments under non-equilibrium conditions. The fall velocity of the suspended sediment is modified in the present model due to the high sediment concentration. A 3-layer approach is adopted to simulate the variations of sediment gradations of bed materials. Furthermore, the model is used to simulate the bed evolution in the Yellow River Delta (YRD) from 1992 to 1995. Field data are used to calibrate the parameters. The numerical results show how the morphology was developed in the Yellow River Estuary with a good agreement with the field data.展开更多
A mathematical model of river be d change downstream of the Xiaolangdi Reservoir was developed based on the most recent achievement of sediment theory in the Yellow River. The model was verified by the comparison of...A mathematical model of river be d change downstream of the Xiaolangdi Reservoir was developed based on the most recent achievement of sediment theory in the Yellow River. The model was verified by the comparison of computed results and measured data from 1986 to 1996. Num erical prediction of the erosion and deposition downstream of the Xiaolangdi Res ervoir in its first operation year was carried out, and a series of suggestions were given for reservoir operation mode in its early operation period.展开更多
Over the last several decades,various sediment transport capacity formulations have been used by geomorphologists and engineers to calculate fluvial morphological changes.However,it remains poorly understood if the ad...Over the last several decades,various sediment transport capacity formulations have been used by geomorphologists and engineers to calculate fluvial morphological changes.However,it remains poorly understood if the adaptation to capacity could be fulfilled instantly in response to differing inflow discharges and sediment supplies,and thus if the calculation of morphological changes in rivers based on the assumed capacity status is fully justified.Here we present a numerical investigation on this issue.The distance required for sediment transport to adapt to capacity(i.e.,adaptation-to-capacity length) of both bed load and suspended sediment transport is computationally studied using a coupled shallow water hydrodynamic model,in line with varied inlet sediment concentrations.It is found that the adaptation-to-capacity length generally decreases as the Rouse number increases,irrespective of whether the inlet sediment concentration increases or reduces.For cases with vanishing inlet sediment concentration a unified relationship is found between the adaptation-to-capacity length and the Rouse number.Quantitatively,the adaptation-to-capacity length of bed load sediment is limited to tens of times of the flow depth,whilst that of suspended sediment increases substantially with decreasing Rouse number and can be up to hundreds of times of the flow depth.The present finding concurs that bed load sediment transport can adapt to capacity much more rapidly than suspended sediment transport,and it facilitates a quantitative criterion on which the applicability of bed load or suspended sediment transport capacity for natural rivers can be readily assessed.展开更多
The river reach downstream of a floodgate at the estuary of the Xinyihe River is about 1.3km long, and the riverbed is composed of clotty clay. In the experiment, soil samples are taken from the construction site, and...The river reach downstream of a floodgate at the estuary of the Xinyihe River is about 1.3km long, and the riverbed is composed of clotty clay. In the experiment, soil samples are taken from the construction site, and the incipient velocity is determined in a laboratory flume, and it is used to design the scour model and to select model sand material. The experimental results show that scours below the floodgate is unavoidable due to large discharge and Low tidal level. Scours is caused by two factors: the rapid flow passing though the floodgate and the water drop near the river mouth during low ride, and the scout below the floodgate is more critical to the structural design. It is suggested that anti-scour walls should be used instead of riprap. The ideas and methods adopted in the experiment can be used as reference in the study on river scout under similar conditions.展开更多
In this paper, the erosion-resisting coefficient was introduced to computebed deformation in a crush bedrock river. In the case of crush bedrock, there has been no propercontrol equation to describe bed stability, whi...In this paper, the erosion-resisting coefficient was introduced to computebed deformation in a crush bedrock river. In the case of crush bedrock, there has been no propercontrol equation to describe bed stability, which leads to difficulty in calculation of the beddeformation with conventional methods. The data from field survey were used to give thee-rosion-resisting capability with an appropriate coefficient. After the determination oflongitudinal distribution expressed by polynomial regression and transversal distribution expressedby normal distribution function, the plane distribution of erosion-resisting coefficient in a crushbedrock river was obtained. With the computational results from a 2-D horizontal flow mathematicalmodel, the erosion-resisting coefficient and controlling condition of local stability were employedto compute the values of bed deformation when riverbed is stable. The above method was applied in acase study, and the computational results of flow and bed deformations are in good a-greement withphysical model test data.展开更多
文摘Bathymetric and land surveys were conducted for the northern Tigris River reach (18 km length) in Baghdad, producing 180 cross sections. A river bed topography map was constructed from these cross sections. The velocity profiles and the water discharges were measured using ADCP (Acoustic Doppler Current Profiler) at 16 cross sections, where intensive number of sediment samples was collected to determine riverbed characteristics and sediment transport rate. The three-dimensional morphodynamic model (SSIIM (simulation of sediment movements in water intakes with multiblock option)) was used to simulate the velocity field and the water surface profile along the river reach. The model was calibrated for the water levels, the velocity profiles and the sediment concentration profiles using different combinations of parameters and algorithms. The calibration and the validation results showed good agreement with field measurements, and the model was used to predict the future changes in river hydro-morphology for a period of 14 months. The results of the future predictions showed the Tigris River which behaved like an under-fit river, increases in depositions on the shallow part of the cross section having lower velocity, and the river deepens the incised route to fit its current hydrologic condition leaving the former wide section as a floodplain for the newer river. The net deposition/erosion rate was 67.44 kg/s in average and the total deposition quantity was 2.12 million ton annually. An expansion in the size of current islands was predicted. An indication of the potential threats of the river banks' collapse and the bridge piers' instability was given by high erosion along the thalweg line.
基金Project supported by the Key Project of National Natural Science Foundation of China(Grant No.51039002)the State Key Laboratory of Hydroscience and Engineering,Tsinghua University(Grant No.2009-TC-2)supported by the Tsinghua University Initiative Scientific Research Program(Grant No.2009THZ07060)
文摘This article discusses the process of sediment transport and proposes a morphological model to predict the bed evolution in estuaries. The hydrodynamic module is based on an existent model-Depth Integrated Velocity And Solute Transport (DIVAST) and the wetting and drying method is adopted to deal with the moving boundary. Both cohesive sediment and non-cohesive sediment are taken into consideration in the sediment transport module with the capability of simulating the transport of graded sediments under non-equilibrium conditions. The fall velocity of the suspended sediment is modified in the present model due to the high sediment concentration. A 3-layer approach is adopted to simulate the variations of sediment gradations of bed materials. Furthermore, the model is used to simulate the bed evolution in the Yellow River Delta (YRD) from 1992 to 1995. Field data are used to calibrate the parameters. The numerical results show how the morphology was developed in the Yellow River Estuary with a good agreement with the field data.
基金Project supported by the National Natural Science Foundation of China. (No:59890200)
文摘A mathematical model of river be d change downstream of the Xiaolangdi Reservoir was developed based on the most recent achievement of sediment theory in the Yellow River. The model was verified by the comparison of computed results and measured data from 1986 to 1996. Num erical prediction of the erosion and deposition downstream of the Xiaolangdi Res ervoir in its first operation year was carried out, and a series of suggestions were given for reservoir operation mode in its early operation period.
基金funded by Natural Science Foundation of China (Grants Nos. 11172217, 10932012 and 10972164)
文摘Over the last several decades,various sediment transport capacity formulations have been used by geomorphologists and engineers to calculate fluvial morphological changes.However,it remains poorly understood if the adaptation to capacity could be fulfilled instantly in response to differing inflow discharges and sediment supplies,and thus if the calculation of morphological changes in rivers based on the assumed capacity status is fully justified.Here we present a numerical investigation on this issue.The distance required for sediment transport to adapt to capacity(i.e.,adaptation-to-capacity length) of both bed load and suspended sediment transport is computationally studied using a coupled shallow water hydrodynamic model,in line with varied inlet sediment concentrations.It is found that the adaptation-to-capacity length generally decreases as the Rouse number increases,irrespective of whether the inlet sediment concentration increases or reduces.For cases with vanishing inlet sediment concentration a unified relationship is found between the adaptation-to-capacity length and the Rouse number.Quantitatively,the adaptation-to-capacity length of bed load sediment is limited to tens of times of the flow depth,whilst that of suspended sediment increases substantially with decreasing Rouse number and can be up to hundreds of times of the flow depth.The present finding concurs that bed load sediment transport can adapt to capacity much more rapidly than suspended sediment transport,and it facilitates a quantitative criterion on which the applicability of bed load or suspended sediment transport capacity for natural rivers can be readily assessed.
文摘The river reach downstream of a floodgate at the estuary of the Xinyihe River is about 1.3km long, and the riverbed is composed of clotty clay. In the experiment, soil samples are taken from the construction site, and the incipient velocity is determined in a laboratory flume, and it is used to design the scour model and to select model sand material. The experimental results show that scours below the floodgate is unavoidable due to large discharge and Low tidal level. Scours is caused by two factors: the rapid flow passing though the floodgate and the water drop near the river mouth during low ride, and the scout below the floodgate is more critical to the structural design. It is suggested that anti-scour walls should be used instead of riprap. The ideas and methods adopted in the experiment can be used as reference in the study on river scout under similar conditions.
文摘In this paper, the erosion-resisting coefficient was introduced to computebed deformation in a crush bedrock river. In the case of crush bedrock, there has been no propercontrol equation to describe bed stability, which leads to difficulty in calculation of the beddeformation with conventional methods. The data from field survey were used to give thee-rosion-resisting capability with an appropriate coefficient. After the determination oflongitudinal distribution expressed by polynomial regression and transversal distribution expressedby normal distribution function, the plane distribution of erosion-resisting coefficient in a crushbedrock river was obtained. With the computational results from a 2-D horizontal flow mathematicalmodel, the erosion-resisting coefficient and controlling condition of local stability were employedto compute the values of bed deformation when riverbed is stable. The above method was applied in acase study, and the computational results of flow and bed deformations are in good a-greement withphysical model test data.