期刊文献+
共找到13篇文章
< 1 >
每页显示 20 50 100
Areas of the global major river plumes
1
作者 KANG Yan PAN Delu +4 位作者 BAI Yan HE Xianqiang CHEN Xiaoyan CHEN Chen-Tung Arthur WANG Difeng 《Acta Oceanologica Sinica》 SCIE CAS CSCD 2013年第1期79-88,共10页
River plumes are the regions where the most intense river-sea-land interaction occurs, and they are char- acterized by complex material transport and biogeochemical processes. However, due to their highly dy- namic na... River plumes are the regions where the most intense river-sea-land interaction occurs, and they are char- acterized by complex material transport and biogeochemical processes. However, due to their highly dy- namic nature, global river plume areas have not yet been determined for use in synthetic studies of global oceanography. Based on global climatological monthly averaged salinity data from the NOAA World Ocean Atlas 2009 (WOA09), and monthly averaged salinity contour maps of the East and South China Seas from the Chinese Marine Atlas, we extract the monthly plume areas of major global rivers using a geographic information system (GIS) technique. Only areas with salinities that are three salinity units lower than the average salinity in each ocean are counted. This conservative estimate shows that the minimum and max- imum monthly values of the total plume area of the world's 19 largest rivers are 1.72× 106 kin2 in May and 5.38× 106 klTl2 inAugust. The annual mean area of these river plumes (3.72× 106 knl2) takes up approximately 14.2% of the total continental shelves area worldwide (26.15 × 106 km2). This paper also presents river plume areas for different oceans and latitude zones, and analyzes seasonal variations of the plume areas and their relationships with river discharge. These statistics describing the major global river plume areas can now provide the basic data for the various flux calculations in the marginal seas, and therefore will be of useful for many oceanographic studies. 展开更多
关键词 river plume World Ocean Atlas geography information system Changjiang river marginal sea
下载PDF
A numerical model study on the spatial and temporal variabilities of dissolved oxygen in Qinzhou Bay of the northern Beibu Gulf
2
作者 Gaolei Cheng Shiqiu Peng +1 位作者 Bin Yang Dongliang Lu 《Acta Oceanologica Sinica》 SCIE CAS CSCD 2024年第6期49-59,共11页
Oxygen facilitates the breakdown of the organic material to provide energy for life.The concentration of dissolved oxygen(DO) in the water must exceed a certain threshold to support the normal metabolism of marine org... Oxygen facilitates the breakdown of the organic material to provide energy for life.The concentration of dissolved oxygen(DO) in the water must exceed a certain threshold to support the normal metabolism of marine organisms.Located in the northern B eibu Gulf,Qinzhou B ay receives abundant freshwater and nutrients from several rivers which significantly influence the level of the dissolved oxygen.However,the spatial-temporal variations of DO as well as the associated driving mechanisms have been rarely studied through field observations.In this study,a three-dimension al coupled physical-biogeochemical model is used to investigate the spatial and seasonal variations of the DO and the associated driving mechanisms in Qinzhou B ay.The validation against observations indicates that the model can capture the seasonal and inter-annual variability of the DO concentration with the range of 5-10 mg/L.Sensitivity experiments show that the river discharges,winds and tides play crucial roles in the seasonal variability of the DO by changing the vertical mixing and stratification of the water column and the circulation pattern.In winter,the tide and wind forces have strong effects on the DO distribution by enhancing the vertical mixing,especially near the bay mouth.In summer,the river discharges play a dominant role in the DO distribution by inhibiting the vertical water exchange and delivering more nutrients to the Bay,which increases the DO depletion and results in lower DO on the bottom of the estuary salt wedge.These findings can contribute to the preservation and management of the coastal environment in the northern Beibu Gulf. 展开更多
关键词 river plume dissolved oxygen STRATIFICATION physical-biological model
下载PDF
Spectral classification of water masses under the influence of the Amazon River plume 被引量:2
3
作者 Gustavo Souto Fontes Molleri Milton Kampel Evlyn Mrcia Leo de Moraes Novo 《Acta Oceanologica Sinica》 SCIE CAS CSCD 2010年第3期1-8,共8页
The large amount of dissolved and particulate material discharged by the Amazon River into the Equatorial Atlantic Ocean cause distinct spectral response of its waters as compared to the nearby ocean waters. This pape... The large amount of dissolved and particulate material discharged by the Amazon River into the Equatorial Atlantic Ocean cause distinct spectral response of its waters as compared to the nearby ocean waters. This paper shows the application of K-means clustering algorithm for classifying water masses in the region under the Amazon River plume influence according to their spectral behavior. Salinity and temperature data from 67 oceanographic stations were related to Sea-viewing Wide Field-of-view Sensor (SeaWiFS) remote sensing reflectances values and the following bio-optical products: (i) chlorophyll-a concentration, (ii) water attenuation coefficient and (iii) absorption coefficient for dissolved and detrital material. Four different water masses were identified such as: (1) oceanic water, (2) intermediate oceanic water, (3) intermediate river plume water and (4) Amazon River plume water. The spectral behavior of these water masses allowed concluding that the main active optical component of the waters in the region is the colored dissolved organic matter originated mostly from the Amazon River. 展开更多
关键词 ocean color remote sensing amazon river plume spectral behavior cluster analysis
下载PDF
Benthic microbial biogeography along the continental shelf shaped by substrates from the Changjiang River plume
4
作者 Yongjun Wei Shan Jiang +6 位作者 Lingmin Tian Liping Wei Jie Jin Juan Severino Pino Ibanhez Yan Chang Xiaodao Wei Ying Wu 《Acta Oceanologica Sinica》 SCIE CAS CSCD 2022年第1期118-131,共14页
Coastal zones are active reactors of continental material including that transported by rivers via a series of microbiota-mediated reactions. Nevertheless, current knowledge of the ecology and functioning of the micro... Coastal zones are active reactors of continental material including that transported by rivers via a series of microbiota-mediated reactions. Nevertheless, current knowledge of the ecology and functioning of the microbiota in coastal areas affected by large riverine inputs remains insufficient on a global scale. Here, an investigation on sediment microbial composition, including taxonomy and metabolic network, as well as their relationship with major benthic reaction substrates, namely carbon, nitrogen, sulphur and phosphorus, was conducted in the continental shelf affected by the spread of the Changjiang River plume. Surface sediment samples(48 samples)were collected during March 2018, obtaining a mean Operational Taxonomic Units(OTUs) number of 3 341.Proteobacteria, Acidobacteria and Actinobacteria were abundant phyla in the studied sediments. Bray-Curtis distance analysis classified the 48 samples into 4 clusters(MG1 to MG4) at the phylum-level. MG1 and MG2 are found near the river mouth, receiving substantial land-derived particles from the Changjiang River runoff.Particle-attached microbes may be settled in these regions and influenced the observed sediment microbial diversity and biomass, e.g., increased Crenarchaeota relative abundance. The relative enrichment of these two groups in heterotrophic microbes further suggests a reliance of benthic microbiota on substrates with terrestrial origin, particularly specialized on processing sulphur-rich substrates. Regions MG3 and MG4 are located in the outer margin of the area affected by the Changjiang River plume, mainly fed by settling pelagic particles from phytoplankton. Compared to MG1 and MG2, a significant increase in the abundance of Thaumarcheota(phylumlevel) and Nitrosopumilus(genus-level) was found in MG3, suggesting nitrogen-related transformations as the key reactions to sustain microbial metabolism in this region. Coupled with the identified variations in the taxonomic composition, significant differences in the keystone taxa between MG1/MG2 and MG3/MG4 were identified via OTU co-occurrence analyses. A higher abundance of Actinobacteria, Thaumarchaeota and Acidobacteria in MG3 and MG4 reinforced the identified spatial variability in benthic metabolism and highlighted the significance of substrate inputs on the sediment microbial structure and biogeography. 展开更多
关键词 benthic microbiota BIOGEOGRAPHY benthic substrate Changjiang river plume East China Sea Yellow Sea
下载PDF
Numerical Study of Flow Near River Outlet in Namtso Lake
5
作者 德吉玉珍 Jarle Berntsen 《Journal of Southwest Jiaotong University(English Edition)》 2008年第4期404-413,共10页
A river plume dynamics analysis was made in Namtso Lake by using a sigma coordinate non-hydrostatic numerical ocean model, the Bergen Ocean Model. Simulations were carried out by hydrostatic and non-hydrostatic models... A river plume dynamics analysis was made in Namtso Lake by using a sigma coordinate non-hydrostatic numerical ocean model, the Bergen Ocean Model. Simulations were carried out by hydrostatic and non-hydrostatic models with horizontal resolution of 5.00 m, 2.50 m and 1, 25 m, respectively. The simulation results for the homogeneous lake are robust to the grid size, and the non-hydrostatic pressure effect is not important in this ease. For the stratified case, the results are sensitive to both the grid size and non-hydrostatic pressure corrections. 展开更多
关键词 Non-hydrostatics river plume Numerical ocean model Σ-COORDINATE STRATIFIED
下载PDF
Environmental control of mesozooplankton community structure in the Hangzhou Bay, China 被引量:6
6
作者 SUN Dong LIU Zhensheng +2 位作者 ZHANG Jing WANG Chunsheng SHAO Qianwen 《Acta Oceanologica Sinica》 SCIE CAS CSCD 2016年第10期96-106,共11页
A quarterly study of mesozooplankton community structure and environmental variables in the Hangzhou Bay was conducted to examine the response of mesozooplankton community to the variation of water mass and environmen... A quarterly study of mesozooplankton community structure and environmental variables in the Hangzhou Bay was conducted to examine the response of mesozooplankton community to the variation of water mass and environmental condition. The southeast coast of China is a typical region under the intensive influence of Asia monsoon and freshwater discharge from rivers. The water mass and environmental condition of the Hangzhou Bay, which were influenced by the interaction of currents, freshwater discharge of the Qiantang River and Changjiang River Plume, showed significant seasonal variation. Our results showed that both biomass and abundance were significantly higher in summer((247.7±148.8) mg/m^3 and(350.9±215.6) ind./m^3, respectively)than those in other seasons. Four eco-geographical regions were divided based on the cluster analysis of zooplankton community of the Hangzhou Bay throughout the year, except for winter. Monsoon and the dissolved inorganic nitrogen(DIN) input from freshwater discharge of the Qiantang River and Changjiang River resulted in temporal and spatial variations of environmental gradient in the Hangzhou Bay, which significantly influenced the structure of mesozooplankton community. Redundancy analysis(RDA) indicated that the mesozooplankton community structure was strictly correlated with the DIN gradient, while salinity gradient showed a weak influence in the Hangzhou Bay. 展开更多
关键词 ZOOPLANKTON MONSOONS dissolved inorganic nitrogen Changjiang river Plume community composition East China Sea
下载PDF
Origins and transports of the low-salinity coastal water in the southwestern Yellow Sea 被引量:5
7
作者 ZHU Ping WU Hui 《Acta Oceanologica Sinica》 SCIE CAS CSCD 2018年第4期1-11,共11页
In the southwestern Yellow Sea there is a low-salinity and turbid coastal water,the Subei Coastal Water(SCW).The origins of freshwater contents and thus the dissolved terrigenous nutrients in the SCW have been debat... In the southwestern Yellow Sea there is a low-salinity and turbid coastal water,the Subei Coastal Water(SCW).The origins of freshwater contents and thus the dissolved terrigenous nutrients in the SCW have been debated for decades.In this study,we used a well-validated numerical model to quantify the contributions of multiple rivers,i.e.,the Changjiang River in the south and the multiple Subei local rivers(SLRs) in the north,in forming this yearround low-salinity coastal water.It is found that the freshwater contents in the SCW is dominated by the Changjiang River south of 33.5°N,by the SLRs north of 34.5°N,and by both sources in 33.5°–34.5°N.Overall,the Changjiang River contributes ~70% in the dry season and ~80% in the wet season of the total freshwater contents in the SCW,respectively.Dynamics driving the Changjiang River Plume to flow northward is the tidal residual current,which can even overwhelm the wind effects in winter seasons.The residual currents turn offshore near the Old Yellow River Delta(OYRD) by the collision of the two tidal wave systems,which transport the freshwater from both sources into the interior Yellow Sea.Water age experiments show that it takes 50–150 d for the Changjiang River Plume to reach the SCW in the spring and summer seasons,thus there is a 2-month lag between the maximum freshwater content in SCW and the peak Changjiang River discharge.In the winter and autumn seasons,the low salinity in inner SCW is the remnant Changjiang River diluted water arrived in the previous seasons. 展开更多
关键词 Subei Coastal Water origins river plume numerical modeling
下载PDF
Effects of wave-current interaction on the waves, cold-water mass and transport of diluted water in the Beibu Gulf 被引量:3
8
作者 Jingling Yang Shaocai Jiang +3 位作者 Junshan Wu Lingling Xie Shuwen Zhang Peng Bai 《Acta Oceanologica Sinica》 SCIE CAS CSCD 2020年第1期25-40,共16页
Wave-current interaction and its effects on the hydrodynamic environment in the Beibu Gulf(BG) have been investigated via employing the Coupled Ocean–Atmosphere–Wave–Sediment Transport(COAWST) modeling system. The ... Wave-current interaction and its effects on the hydrodynamic environment in the Beibu Gulf(BG) have been investigated via employing the Coupled Ocean–Atmosphere–Wave–Sediment Transport(COAWST) modeling system. The model could simulate reasonable hydrodynamics in the BG when validated by various observations.Vigorous tidal currents refract the waves efficiently and make the seas off the west coast of Hainan Island be the hot spot where currents modulate the significant wave height dramatically. During summer, wave-enhanced bottom stress could weaken the near-shore component of the gulf-scale cyclonic-circulation in the BG remarkably, inducing two major corresponding adjustments: Model results reveal that the deep-layer cold water from the southern BG makes critical contribution to maintaining the cold-water mass in the northern BG Basin.However, the weakened background circulation leads to less cold water transported from the southern gulf to the northern gulf, which finally triggers a 0.2℃ warming in the cold-water mass area;In the top areas of the BG, the suppressed background circulation reduces the transport of the diluted water to the central gulf. Therefore, more freshwater could be trapped locally, which then triggers lower sea surface salinity(SSS) in the near-field and higher SSS in the far-field. 展开更多
关键词 wave-current interaction Beibu Gulf river plume cold-water mass COAWST
下载PDF
Observations of turbulent mixing and vertical diff usive salt fl ux in the Changjiang Diluted Water 被引量:1
9
作者 Baisu ZHU Wei YANG +2 位作者 Chengfei JIANG Tao WANG Hao WEI 《Journal of Oceanology and Limnology》 SCIE CAS CSCD 2022年第4期1349-1360,共12页
Based on microstructure measurements from a repeated sampling station southwest of the Jeju Island during summer,we studied the hydrography,pycnocline turbulence,and vertical salt fl ux in the Changjiang Diluted Water... Based on microstructure measurements from a repeated sampling station southwest of the Jeju Island during summer,we studied the hydrography,pycnocline turbulence,and vertical salt fl ux in the Changjiang Diluted Water(CDW).The water column was well stratifi ed with the CDW occupied the surface~20 m.Most of the large turbulent kinetic energy dissipation rate(ε)were found in the bottom boundary layer.Interestingly,intermittent strong turbulence(ε>10^(-6) W/kg)occurred in the pycnocline,which may induce strong mixing events and increase the vertical diff usive salt fl ux at the base of CDW by one order of magnitude.The daily-mean vertical diff usive salt fl ux could reach 4.3(2.1,8.9)×10^(-6) m/s.Both moored velocity measurements and associated wavelet analysis showed the presence of velocity fl uctuations when there was strong pycnocline turbulence.The moderate resolution imaging spectroradiometer(MODIS)satellite images further suggest that the velocity fl uctuations are induced by the prevailing internal solitary waves(ISWs)which are mainly generated at the shelf break of the East China Sea or the topographic features surrounding Jeju Island.The calculated gradient Richardson number denote the occurrence of shear instability in the pycnocline when strong turbulence presents.The presented results have strong implications for the importance of ISWs in infl uencing the vertical diff usion of CDW and changes in other properties. 展开更多
关键词 TURBULENCE vertical salt flux internal solitary wave Changjiang river plume
下载PDF
The effect of wind on the dispersal of a tropical small river plume
10
作者 Junpeng ZHAO Wenping GONG Jian SHEN 《Frontiers of Earth Science》 SCIE CAS CSCD 2018年第1期170-190,共21页
Wanquan River is a small river located in Hainan, a tropical island in China. As the third largest river in Hainan, the river plume plays an important role in the regional terrigenous mass transport, coastal circulati... Wanquan River is a small river located in Hainan, a tropical island in China. As the third largest river in Hainan, the river plume plays an important role in the regional terrigenous mass transport, coastal circulation, and the coral reef's ecosystem. Studies have shown that wind forcings significantly influence river plume dynamics. In this study, wind effects on the dispersal of the river plume and freshwater transport were examined numerically using a calibrated, unstructured, finite volume numerical model (FVCOM). Both wind direction and magnitude were determined to influence plume dispersal. Northeasterly (downwelling-favorable) winds drove fresh- water down-shelf while southeasterly (onshore) winds drove water up-shelf (in the sense of Kelvin wave propagation) , and were confined near the coast. Southwesterly (upwelling-favorable) and northwesterly (off: shore) winds transport more freshwater offshore. The transport flux is decomposed into an advection, a vertical shear, and an oscillatory component. The advection flux dominates the freshwater transport in the coastal area and the vertical shear flux is dominant in the offshore area. For the upwelling-favorable wind, the freshwater transport becomes more controlled by the advection transport with an increase in wind stress, due to enhanced vertical mixing. The relative importance of wind forcing and buoyancy force was investigated. It was found that, when the Wedderburn number is larger than one, the plume was dominated by wind forcing, although the importance of wind varies in different parts of the plume. The water column stratification decreased as a whole under the prevailing southwesterly wind, with the exception of the up-shelf and offshore areas. 展开更多
关键词 small river plume wind effect freshwater transport
原文传递
Jet-like features of Jiulongjiang River plume discharging into the west Taiwan Strait
11
作者 Daifeng WANG Quan'an ZHENG Jianyu HU 《Frontiers of Earth Science》 SCIE CAS CSCD 2013年第3期282-294,共13页
In-situ data from the summer cruise of 2010 in the west Taiwan Strait are used to study the spatial distribution of the Jiulongjiang River plume (JRP). The results show that in the 2 m layer, the JRP debouches into ... In-situ data from the summer cruise of 2010 in the west Taiwan Strait are used to study the spatial distribution of the Jiulongjiang River plume (JRP). The results show that in the 2 m layer, the JRP debouches into the west Taiwan Strait in the form of jets, with one branch through the Xiamen Bay (Xiamen JR_P) and another through the channel between Jinmen and Weitou (JinWei JRP). Driven by the summer southwesterly monsoon, the upwelling-related Dongshan low temperature and high salinity water flows northeastward in the form of a jet as well. To a certain degree, the Dongshan low temperature and high salinity jet restricts the Xiamen JRP from spreading further offshore and drags the JinWei JRP northeastward at the same time. Meanwhile, a terrestrial dissolved organic matter (DOM) distribution model on the basis of molecular collision theory in thermodynamics and statistical physics is applied to analyze the Moderate Resolution Imaging Spectroradiometer (MODIS) turbidity data. The correlation coefficient of the theoretical model to the MODIS turbidity data reaches 0.96 (significant at a 95% level of confidence). The result clarifies the dynamic mechanism for the turbidity distribution characteristics. It is the salinity in macro-scale that plays a decisive role in the turbidity variability in the coastal water. This suggests that the satellite-derived turbidity data can be used as an indicator to show the spreading patterns of the JRP. Based on the turbidity data from 2003 to 2011, we conclude that there are four main spreading patterns of the JRP. 展开更多
关键词 Jiulongjiang river plume jet current terrestrial DOM MODIS data Taiwan Strait
原文传递
Observation of the supercritical Pearl River plume front under the downwelling-favorable winds
12
作者 BAI Peng GU YanZhen +2 位作者 LUO Lin ZHANG WanLei FAN KaiGuo 《Science China Earth Sciences》 SCIE EI CAS CSCD 2015年第11期2059-2066,共8页
For the Pearl River plume, the supercritical, distinct plume front appears in downwelling-favorable winds, which is easily observed due to the distinct boundary between the plume water and the ambient water. In this p... For the Pearl River plume, the supercritical, distinct plume front appears in downwelling-favorable winds, which is easily observed due to the distinct boundary between the plume water and the ambient water. In this paper, in situ and satellite observations of a plume front are utilized to explore the Pearl River plume front properties under the downwelling-favorable winds. Field observations clearly show frontal structure, especially the two-layer structure in the plume water and the downward-motion of water in the frontal region. The Advanced Synthetic Aperture Radar(ASAR) images are also analyzed to unveil the plume front: there is a white stripe on the west side out of the river mouth under downwelling-favorable winds, which is identified as a supercritical plume front, and the width of the plume front is about 250 m. The normalized velocity gradient shows the intense velocity convergence in the front region. Also, analyses of ASAR images imply that the river discharge plays an important role in controlling the location and shape of the front. 展开更多
关键词 cruise observations Pearl river plume front ASAR winds
原文传递
On summer stratification and tidal mixing in the Taiwan Strait 被引量:3
13
作者 Jia ZHU Jianyu HU Zhiyu LIU 《Frontiers of Earth Science》 SCIE CAS CSCD 2013年第2期141-150,共10页
On continental shelves, a front that separates the sea into well-mixed and stratified zones is usually formed in warm seasons due to spatial variations of tidal mixing. In this paper, using eight years of in situ hydr... On continental shelves, a front that separates the sea into well-mixed and stratified zones is usually formed in warm seasons due to spatial variations of tidal mixing. In this paper, using eight years of in situ hydrographic observations, satellite images of sea surface temperature (SST) and chlorophyll-a (Chl-a) concentration, and results of a tidal model, we investigate summer stratification in the Taiwan Strait and its dependence on tidal mixing, upwelling, and river diluted water plumes. In most regions of the strait the dominant role of tidal mixing in determining the thermohaline structure is confirmed by the correlation between the two; there are some regions, however, where thermohaline structure varies in different ways owing to significant influences ofupwelling and river diluted water plumes. The well-mixed regions are mainly distributed on the Taiwan Bank and in the offshore regions off the Dongshan Island, Nanao Island, and Pingtan Island, while the northern and central Taiwan Strait and the region south of the Taiwan Bank are stratified. The critical Simpson-Hunter parameter for the region is estimated to be 1.78. 展开更多
关键词 Taiwan Strait STRATIFICATION tidal mixing coastal upwelling river plume
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部