River morphology has been a subject of great challenge to scientists and engineers who recognize that any effort with regard to river engineering must be based on a proper understanding of the morphological features i...River morphology has been a subject of great challenge to scientists and engineers who recognize that any effort with regard to river engineering must be based on a proper understanding of the morphological features involved and the responses to the imposed changes. In this paper, an overview of river morphology is presented from the geomorphic viewpoint. Included in the scope are the regime concept, river channel classification, thresholds in river morphology, and geomorphic analysis of river responses. Analytical approach to river morphology based on the physical principles for the hydraulics of flow and sediment transport processes is also presented. The application of analytical river morphology is demonstrated by an example. Modeling is the modern technique to determine both short-term and long-term river channel responses to any change in the environment. The physical foundation of fluvial process-response must be applied in formatting a mathematical model. A brief introduction of the mathematical model FLUVIAL-12 is described.展开更多
To improve flood control efficiency and increase urban resilience to flooding,the impacts of forest type change on flood control in the upper reach of the Tingjiang River(URTR) were evaluated by a modified model based...To improve flood control efficiency and increase urban resilience to flooding,the impacts of forest type change on flood control in the upper reach of the Tingjiang River(URTR) were evaluated by a modified model based on the Soil Conservation Service curve number(SCS-CN) method. Parameters of the model were selected and determined according to the comprehensive analysis of model evaluation indexes. The first simulation of forest reconstruction scenario,namely a coniferous forest covering 59.35km^2 is replaced by a broad-leaved forest showed no significant impact on the flood reduction in the URTR. The second simulation was added with 61.75km^2 bamboo forest replaced by broad-leaved forest,the reduction of flood peak discharge and flood volume could be improved significantly. Specifically,flood peak discharge of 10-year return period event was reduced to 7-year event,and the reduction rate of small flood was 21%-28%. Moreover,the flood volume was reduced by 9%-14% and 18%-35% for moderate floods and small floods,respectively. The resultssuggest that the bamboo forest reconstruction is an effective control solution for small to moderate flood in the URTR,the effect of forest conversion on flood volume is increasingly reduced as the rainfall amount increases to more extreme magnitude. Using a hydrological model with scenarios analysis is an effective simulation approach in investigating the relationship between forest type change and flood control. This method would provide reliable support for flood control and disaster mitigation in mountainous cities.展开更多
The applicability of sequence stratigraphic models to continental fluvial successions has long been topic for debate. To improve our understanding of how fluvial architectures record responses to changes in the ratio ...The applicability of sequence stratigraphic models to continental fluvial successions has long been topic for debate. To improve our understanding of how fluvial architectures record responses to changes in the ratio between accommodation rate and sediment-supply rate (A/S), two case studies are analyzed, including a densely drilled subsurface fluvial reservoir imaged with a seismic cube, and an outcropping fluvial succession. The subsurface dataset provides a larger, three-dimensional perspective, whereas the outcrop dataset enables observation at higher resolution. On the basis of both datasets, channel-body density, channel-body stacking patterns and their formative river types are interpreted at different scales, and how these may reflect responses to A/S change (the rate of accommodation creation relative to the rate of sediment supply) are discussed. The results indicate that (i) channel-body stacking patterns undergo four evolutionary stages along with the A/S increase, i.e., multi-story, mixed multi- and two-story, two-story, and isolated patterns;(ii) channel-body density decreases along with the channel-body stacking patterns varying from multi-story to isolated;(iii) formative rivers types are interpreted as evolving from braided planforms to braided-meandering planforms and then to meandering ones, with the increase of A/S.展开更多
Based on the data of core description and sporopollen analysis,the gradual evolution of deltas in vertical direction and transition of channel types in the MPE3 block of the eastern Venezuela Basin have been surveyed ...Based on the data of core description and sporopollen analysis,the gradual evolution of deltas in vertical direction and transition of channel types in the MPE3 block of the eastern Venezuela Basin have been surveyed by seismic phase and well logging facies interpretation.The results show that due to the great sea level rise,the sedimentary system of the Miocene Oficina Formation in the MPE3 block shifted from the distal-source sandy braided river delta to tide-affected delta,and eventually to tide-dominated delta.Vertically,during the early stage of sedimentation of Oficina Formation,the distributary channels of the delta were dominated by braided river channels.While in the later stage,as the tidal effect was gradually intensified,the channel changed from braided channel to meandering channel.On plane,as a result of differential transgression,sedimentary framework and distribution of sand bodies vary across the study area.Compared with the eastern part,the western part has more braided channels,larger channel bars,less developments of distributary bay and higher ratio of sand to mud.Whereas the braided channels in the south are larger than those in the north.It is the first time we pointed out the impact of marine transgression differences on the sedimentary facies distribution and river type transition in the study area.Factors like the structural and paleogeomorphological change,sea level variation,supply of sediments have strong influence on the evolution of sedimentary system and distribution of sandbodies.It is predicted that the major sandbody is more developed in the central south,which can guide the subsequent horizontal well development.展开更多
It is easy to identify ancient fluvial morphologic types by the outcrop,log and core data.However,the horizontal distribution and geometry of the channels can only be identified and predicted by relying on the 3-D sei...It is easy to identify ancient fluvial morphologic types by the outcrop,log and core data.However,the horizontal distribution and geometry of the channels can only be identified and predicted by relying on the 3-D seismic data.The 3-D seismic horizon slices,especially,can play an important role in the sandstone prediction of meandering rivers,distributary channels and low-sinuosity channels.Every microfacies unit,including main channels,such as sinuous or branching channels,levee,crevasse channels,ligule crevasse splay and floodplain etc.can be identified.Braided channel sandstones are planar tabular lateral-connected sandbodies and the distribution of thick main channel belts can only be identified from 3-D seismic data.As the braided sandstones are ubiquitous,their occurrence and distribution do not need to be predicted.Generally,the coal velocity is so low that it can create a strong amplitude reflection in coal strata.It consequently conceals the amplitude respondence to anastomosing channel sandstone which could be identified from 3-D seismic inversion data sometimes.Case studies of mud-rich low-sinuosity rivers identified with 3-D seismic data indicate that the scales and width-to-thickness ratio of such sandbodies are small,laterally unconnected,and generally occurred on distant or further parts of an alluvial fan under dry climate conditions.Sometimes extraction of seismic attributes of every reflection event along horizons is expected to maximize expression of the spatial evolutions of ancient channels.展开更多
文摘River morphology has been a subject of great challenge to scientists and engineers who recognize that any effort with regard to river engineering must be based on a proper understanding of the morphological features involved and the responses to the imposed changes. In this paper, an overview of river morphology is presented from the geomorphic viewpoint. Included in the scope are the regime concept, river channel classification, thresholds in river morphology, and geomorphic analysis of river responses. Analytical approach to river morphology based on the physical principles for the hydraulics of flow and sediment transport processes is also presented. The application of analytical river morphology is demonstrated by an example. Modeling is the modern technique to determine both short-term and long-term river channel responses to any change in the environment. The physical foundation of fluvial process-response must be applied in formatting a mathematical model. A brief introduction of the mathematical model FLUVIAL-12 is described.
基金funded by the National Natural Science Foundation of China (Grants No.51278239)
文摘To improve flood control efficiency and increase urban resilience to flooding,the impacts of forest type change on flood control in the upper reach of the Tingjiang River(URTR) were evaluated by a modified model based on the Soil Conservation Service curve number(SCS-CN) method. Parameters of the model were selected and determined according to the comprehensive analysis of model evaluation indexes. The first simulation of forest reconstruction scenario,namely a coniferous forest covering 59.35km^2 is replaced by a broad-leaved forest showed no significant impact on the flood reduction in the URTR. The second simulation was added with 61.75km^2 bamboo forest replaced by broad-leaved forest,the reduction of flood peak discharge and flood volume could be improved significantly. Specifically,flood peak discharge of 10-year return period event was reduced to 7-year event,and the reduction rate of small flood was 21%-28%. Moreover,the flood volume was reduced by 9%-14% and 18%-35% for moderate floods and small floods,respectively. The resultssuggest that the bamboo forest reconstruction is an effective control solution for small to moderate flood in the URTR,the effect of forest conversion on flood volume is increasingly reduced as the rainfall amount increases to more extreme magnitude. Using a hydrological model with scenarios analysis is an effective simulation approach in investigating the relationship between forest type change and flood control. This method would provide reliable support for flood control and disaster mitigation in mountainous cities.
基金This research was financially supported by the National Natural Science Foundation Project of China(No.42202109,42272186)the China Postdoctoral Science Foundation1(BX20220351,2022M713458)+2 种基金the Research Institute of Petroleum Exploration and Development,China(2021DJ1101)the Cooperation Project of the PetroChina Corporation(ZLZX2020-02)Anonymous reviewers are thanked for their constructive comments,which helped improve the paper.Additionally,associate professor Luca Colombera is thanked for his suggestions and language polishing work.
文摘The applicability of sequence stratigraphic models to continental fluvial successions has long been topic for debate. To improve our understanding of how fluvial architectures record responses to changes in the ratio between accommodation rate and sediment-supply rate (A/S), two case studies are analyzed, including a densely drilled subsurface fluvial reservoir imaged with a seismic cube, and an outcropping fluvial succession. The subsurface dataset provides a larger, three-dimensional perspective, whereas the outcrop dataset enables observation at higher resolution. On the basis of both datasets, channel-body density, channel-body stacking patterns and their formative river types are interpreted at different scales, and how these may reflect responses to A/S change (the rate of accommodation creation relative to the rate of sediment supply) are discussed. The results indicate that (i) channel-body stacking patterns undergo four evolutionary stages along with the A/S increase, i.e., multi-story, mixed multi- and two-story, two-story, and isolated patterns;(ii) channel-body density decreases along with the channel-body stacking patterns varying from multi-story to isolated;(iii) formative rivers types are interpreted as evolving from braided planforms to braided-meandering planforms and then to meandering ones, with the increase of A/S.
基金supported by the Important National Science Technology Specific Projects (number 2016ZX05031-001)
文摘Based on the data of core description and sporopollen analysis,the gradual evolution of deltas in vertical direction and transition of channel types in the MPE3 block of the eastern Venezuela Basin have been surveyed by seismic phase and well logging facies interpretation.The results show that due to the great sea level rise,the sedimentary system of the Miocene Oficina Formation in the MPE3 block shifted from the distal-source sandy braided river delta to tide-affected delta,and eventually to tide-dominated delta.Vertically,during the early stage of sedimentation of Oficina Formation,the distributary channels of the delta were dominated by braided river channels.While in the later stage,as the tidal effect was gradually intensified,the channel changed from braided channel to meandering channel.On plane,as a result of differential transgression,sedimentary framework and distribution of sand bodies vary across the study area.Compared with the eastern part,the western part has more braided channels,larger channel bars,less developments of distributary bay and higher ratio of sand to mud.Whereas the braided channels in the south are larger than those in the north.It is the first time we pointed out the impact of marine transgression differences on the sedimentary facies distribution and river type transition in the study area.Factors like the structural and paleogeomorphological change,sea level variation,supply of sediments have strong influence on the evolution of sedimentary system and distribution of sandbodies.It is predicted that the major sandbody is more developed in the central south,which can guide the subsequent horizontal well development.
基金supported by the National 973 Project (No.2003CB214602)
文摘It is easy to identify ancient fluvial morphologic types by the outcrop,log and core data.However,the horizontal distribution and geometry of the channels can only be identified and predicted by relying on the 3-D seismic data.The 3-D seismic horizon slices,especially,can play an important role in the sandstone prediction of meandering rivers,distributary channels and low-sinuosity channels.Every microfacies unit,including main channels,such as sinuous or branching channels,levee,crevasse channels,ligule crevasse splay and floodplain etc.can be identified.Braided channel sandstones are planar tabular lateral-connected sandbodies and the distribution of thick main channel belts can only be identified from 3-D seismic data.As the braided sandstones are ubiquitous,their occurrence and distribution do not need to be predicted.Generally,the coal velocity is so low that it can create a strong amplitude reflection in coal strata.It consequently conceals the amplitude respondence to anastomosing channel sandstone which could be identified from 3-D seismic inversion data sometimes.Case studies of mud-rich low-sinuosity rivers identified with 3-D seismic data indicate that the scales and width-to-thickness ratio of such sandbodies are small,laterally unconnected,and generally occurred on distant or further parts of an alluvial fan under dry climate conditions.Sometimes extraction of seismic attributes of every reflection event along horizons is expected to maximize expression of the spatial evolutions of ancient channels.