Tonle Sap Lake is the largest river-connected lake, buffer area and ecological zone of Mekong River, which plays a huge role in dispelling flood peak and compensating water, and the conservation of biological diversit...Tonle Sap Lake is the largest river-connected lake, buffer area and ecological zone of Mekong River, which plays a huge role in dispelling flood peak and compensating water, and the conservation of biological diversity. The river-lake relationship between Mekong River and Tonle Sap Lake is unique and has always been a major focus in the international community. The land terrain and under-water topography were used to analyze the morphological characteristics of Cambodia Mekong Delta and Tonle Sap Lake. Long series of hydrological data of river-lake controlling stations were used to analyze the water level variation characteristics and water volume exchange pattern between Mekong River and Tonle Sap Lake, and the response relationship to river-lake morphological characteristics were also researched. The results show that: Cambodia Mekong Delta and Tonle Sap Lake Area is low-lying and flat with gentle channel gradient and water surface gradient, making the relationship between water level and area (or volume) smooth. The channel storage capacity of Mekong River and Tonle Sap River is not enough compared to the inflow, so vast flooding plain is extremely prone to be inundated, making the flood relationships between the left and right banks become very complicated. Tonle Sap Lake is a seasonal freshwater lake with water flowing in and flowing out, and the timing and intensity of water exchange with Mekong River are closely related to the water flow resistance at the exit section of Tonle Sap Lake and the cross-sectional area of Tonle Sap River, which can be reflected by the river-lake water level difference and the water level of Tonle Sap River. Affected by the river-lake morphological characteristics, the water exchange intensity between Mekong River and Tonle Sap Lake is great. Tonle Sap Lake not only stores 14.4% of flood volume (39.7 billion m3) from the Mekong River every year, but also supplies 29.7% of dry water (69.4 billion m3) to the Mekong River. Influenced by the adjustment of the floodplain, the water level fluctuation of Mekong River and Tonle Sap Lake is slow, and the rising and droop rates of water level are positively correlated with the floodplain storage area. The research results will help to understand the relationship mechanism between Mekong River and Tonle Sap Lake and provide a scientific basis for the comprehensive governance of Cambodia Mekong Delta and Tonle Sap Lake Area.展开更多
Mass transport is crucial to the performance of proton exchange membrane fuel cells,especially at high current densities.Generally,the oxygen and the generated water share same transmission medium but move towards opp...Mass transport is crucial to the performance of proton exchange membrane fuel cells,especially at high current densities.Generally,the oxygen and the generated water share same transmission medium but move towards opposite direction,which leads to serious mass transfer problems.Herein,a series of patterned catalyst layer were prepared with a simple one-step impressing method using nylon sieves as templates.With grooves 100μm in width and 8μm in depth on the surface of cathode catalyst layer,the maximum power density of fuel cell increases by 10%without any additional durability loss while maintaining a similar electrochemical surface area.The concentration contours calculated by finite element analysis reveal that the grooves built on the surface of catalyst layer serve to accumulate the water nearby while oxygen tends to transfer through relatively convex region,which results from capillary pressure difference caused by the pore structure difference between the two regions.The separation of oxidant gas and generated water avoids mass confliction thus boosts mass transport efficiency.展开更多
Compositing soft and hard materials is a promising method to decrease the coercivity of L10 FePt, which is considered to be a suitable material for bit-patterned media. This paper reports the simulation of three model...Compositing soft and hard materials is a promising method to decrease the coercivity of L10 FePt, which is considered to be a suitable material for bit-patterned media. This paper reports the simulation of three models of FeCo/L10 FePt exchange-coupled composite particles for bit patterned media by the OOMMF micromagnetic simulation software: the enclosed model, the side-enclosed model, and the top-covered model. All of them have the same volumes of the soft and hard parts but different shapes. Simulation results show that the switching fields for the three models can be reduced to about 10 kOe (1 Oe = 79.5775 A/m) and the factor gain can be improved to 1.4 when the interface exchange coefficient has a proper value. Compared to the other models, the enclosed model has a wider range of interface exchange coefficient values, in which a low switching field and high gain can be obtained. The dependence of the switching fields on the angle of the applied field shows that none of the three models are easily affected by the stray field of a magnetic head.展开更多
The ordered membrane electrode assembly(MEA)has gained much attention because of its potential in improving mass transfer.Here,a comprehensive study was conducted on the influence of the patterned microporous layer(MP...The ordered membrane electrode assembly(MEA)has gained much attention because of its potential in improving mass transfer.Here,a comprehensive study was conducted on the influence of the patterned microporous layer(MPL)on the proton exchange membrane fuel cell performances.When patterned MPL is employed,grooves are generated between the catalyst layer and the gas diffusion layer.It is found that the grooves do not increase the contact resistance,and it is beneficial for water retention.When the MEA works under low humidity scenarios,the MEA with patterned MPL illustrated higher performance,due to the reduced inner resistance caused by improved water retention,leading to increased ionic conductivity.However,when the humidity is higher than 80%or working under high current density,the generated water accumulated in the grooves and hindered the oxygen mass transport,leading to a reduced MEA performance.展开更多
Chinese stock market is a developing one. In the present stages, to control scientifically the expansion speed and avoid drastic fluctuations is an important problem. Through analysis of plenty of data of SSE(Shanghai...Chinese stock market is a developing one. In the present stages, to control scientifically the expansion speed and avoid drastic fluctuations is an important problem. Through analysis of plenty of data of SSE(Shanghai Stock Exchange) Index and relevant economic quotas, we find that the problem of predicting SSE Index is a typical multi variable, nonlinear one. On the basis of the analysis, we apply the technology of fuzzy pattern recognition, to the optimum pattern division of SSE Index's time alignments from Jan. of 1993 to Dec. of 1997, and get a balanced pattern of the stock index fluctuation. At the same time, by using database technology, we find the optimum expansion speed of Shanghai stock, which can make SSE Index fluctuate steadily within the balanced area. We verified this model with the latest data and found it coincides with the reality perfectly. So it has the practical value and provides the policy makers with a scientific basis in controlling the expansion pace.展开更多
Liquid hydrogen storage and transportation is an effective method for large-scale transportation and utilization of hydrogen energy. Revealing the flow mechanism of cryogenic working fluid is the key to optimize heat ...Liquid hydrogen storage and transportation is an effective method for large-scale transportation and utilization of hydrogen energy. Revealing the flow mechanism of cryogenic working fluid is the key to optimize heat exchanger structure and hydrogen liquefaction process(LH2). The methods of cryogenic visualization experiment, theoretical analysis and numerical simulation are conducted to study the falling film flow characteristics with the effect of co-current gas flow in LH2spiral wound heat exchanger.The results show that the flow rate of mixed refrigerant has a great influence on liquid film spreading process, falling film flow pattern and heat transfer performance. The liquid film of LH2mixed refrigerant with column flow pattern can not uniformly and completely cover the tube wall surface. As liquid flow rate increases, the falling film flow pattern evolves into sheet-column flow and sheet flow, and liquid film completely covers the surface of tube wall. With the increase of shear effect of gas-phase mixed refrigerant in the same direction, the liquid film gradually becomes unstable, and the flow pattern eventually evolves into a mist flow.展开更多
On March 16–17, 2008, a sea fog occurred in Dianbai in the west of Guangdong Province and was accompanied by a high-pressure synoptic system. Using comprehensive observation datasets, this study analyzes the evolutio...On March 16–17, 2008, a sea fog occurred in Dianbai in the west of Guangdong Province and was accompanied by a high-pressure synoptic system. Using comprehensive observation datasets, this study analyzes the evolution of liquid water content during this sea fog and investigates the relationships between liquid water content and the average diameters and count densities of fog droplets, air temperature, wind speed and turbulence exchanges. The main results are presented as follows. (1) The sea fog showed a quasi-periodic oscillation characteristic, i.e., it developed, disappeared and then developed again. (2) During the sea fog, the number of fog droplets changed significantly while the changes in average diameter of the fog droplets were relatively small. The development and disappearance of the sea fog correlated significantly with the fog droplet numbers. (3) The air-cooling mechanism played a significant role in sea fog formation and development. However, the influences of this mechanism were not evident during fog persistence. (4) During sea fog formation, weak turbulence exchanges were helpful for fog formation. During sea fog development and persistence, liquid water content increased when turbulence exchanges weakened, and vice versa. The changes in turbulence exchanges were closely related to the quasi-periodic oscillations observed in sea fog presence.展开更多
The article presents multi-pattern formation exchange of mobile robots according to the image signals, programs motion paths using A* searching algorithm, and avoids the collision points of motion paths. The system c...The article presents multi-pattern formation exchange of mobile robots according to the image signals, programs motion paths using A* searching algorithm, and avoids the collision points of motion paths. The system contains an image system, a grid based motion platform, some wireless Radio Frequency (RF) modules and five mobile robots. We use image recognition algorithm to classify variety pattern formation according to variety Quick Response (QR) code symbols on the user interface of the supervised computer. The supervised computer controls five mobile robots to execute formation exchange and presents the movement scenario on the grid based motion platform. We have been developed some pattern formations according to game applications, such as long snake pattern formation, phalanx pattern formation, crane wing pattern formation, sword pattern formation, cone pattern formation, sward pattern tbrmation, T pattern formation, rectangle pattern formation and so on. We develop the user interface of the multi-robot system to program motion paths for variety pattern formation exchange according to the minimum displacement. In the experimental results, the supervised computer recognizes the various QR-code symbols using image system and decides which pattern formation to be selected on real-time. Mobile robots can receive the pattern formation command from the supervised computer, present the movement scenario from the original pattern formation to the assigned pattern formation on the motion platform, and avoid other mobile robots on real-time.展开更多
Using numerical methodology, the flow fields between two corrugated plates with different values of the corrugation inclination angle β were simulated. The simulation results directly indicate that β affects the flo...Using numerical methodology, the flow fields between two corrugated plates with different values of the corrugation inclination angle β were simulated. The simulation results directly indicate that β affects the flow pattern between corrugated plates, and the results are in good agreement with the experimental results reported by interrelated literature. The results show that the flow pattern between the two plates changes from "double cross-flow" to "zigzag flow" with the increase in β. The reason for the effect on the flow pattern between the two corrugated plates was discussed from the view of the variation of momentum in the direction of corrugation with the variation in β.展开更多
文摘Tonle Sap Lake is the largest river-connected lake, buffer area and ecological zone of Mekong River, which plays a huge role in dispelling flood peak and compensating water, and the conservation of biological diversity. The river-lake relationship between Mekong River and Tonle Sap Lake is unique and has always been a major focus in the international community. The land terrain and under-water topography were used to analyze the morphological characteristics of Cambodia Mekong Delta and Tonle Sap Lake. Long series of hydrological data of river-lake controlling stations were used to analyze the water level variation characteristics and water volume exchange pattern between Mekong River and Tonle Sap Lake, and the response relationship to river-lake morphological characteristics were also researched. The results show that: Cambodia Mekong Delta and Tonle Sap Lake Area is low-lying and flat with gentle channel gradient and water surface gradient, making the relationship between water level and area (or volume) smooth. The channel storage capacity of Mekong River and Tonle Sap River is not enough compared to the inflow, so vast flooding plain is extremely prone to be inundated, making the flood relationships between the left and right banks become very complicated. Tonle Sap Lake is a seasonal freshwater lake with water flowing in and flowing out, and the timing and intensity of water exchange with Mekong River are closely related to the water flow resistance at the exit section of Tonle Sap Lake and the cross-sectional area of Tonle Sap River, which can be reflected by the river-lake water level difference and the water level of Tonle Sap River. Affected by the river-lake morphological characteristics, the water exchange intensity between Mekong River and Tonle Sap Lake is great. Tonle Sap Lake not only stores 14.4% of flood volume (39.7 billion m3) from the Mekong River every year, but also supplies 29.7% of dry water (69.4 billion m3) to the Mekong River. Influenced by the adjustment of the floodplain, the water level fluctuation of Mekong River and Tonle Sap Lake is slow, and the rising and droop rates of water level are positively correlated with the floodplain storage area. The research results will help to understand the relationship mechanism between Mekong River and Tonle Sap Lake and provide a scientific basis for the comprehensive governance of Cambodia Mekong Delta and Tonle Sap Lake Area.
基金supported by the National Natural Science Foundation of China(21838003,91834301)the Shanghai Scientific and Technological Innovation Project(18JC1410600,19JC1410400)+2 种基金the Social Development Program of Shanghai(17DZ1200900)the Innovation Program of Shanghai Municipal Education Commissionthe Fundamental Research Funds for the Central Universities(222201718002)。
文摘Mass transport is crucial to the performance of proton exchange membrane fuel cells,especially at high current densities.Generally,the oxygen and the generated water share same transmission medium but move towards opposite direction,which leads to serious mass transfer problems.Herein,a series of patterned catalyst layer were prepared with a simple one-step impressing method using nylon sieves as templates.With grooves 100μm in width and 8μm in depth on the surface of cathode catalyst layer,the maximum power density of fuel cell increases by 10%without any additional durability loss while maintaining a similar electrochemical surface area.The concentration contours calculated by finite element analysis reveal that the grooves built on the surface of catalyst layer serve to accumulate the water nearby while oxygen tends to transfer through relatively convex region,which results from capillary pressure difference caused by the pore structure difference between the two regions.The separation of oxidant gas and generated water avoids mass confliction thus boosts mass transport efficiency.
基金supported by the National Natural Science Foundation of China (Grant Nos. 61003041,51171086,and 61272076)the Fundamental Research Funds for the Central Universities (Grant No. lzujbky-2010-81)
文摘Compositing soft and hard materials is a promising method to decrease the coercivity of L10 FePt, which is considered to be a suitable material for bit-patterned media. This paper reports the simulation of three models of FeCo/L10 FePt exchange-coupled composite particles for bit patterned media by the OOMMF micromagnetic simulation software: the enclosed model, the side-enclosed model, and the top-covered model. All of them have the same volumes of the soft and hard parts but different shapes. Simulation results show that the switching fields for the three models can be reduced to about 10 kOe (1 Oe = 79.5775 A/m) and the factor gain can be improved to 1.4 when the interface exchange coefficient has a proper value. Compared to the other models, the enclosed model has a wider range of interface exchange coefficient values, in which a low switching field and high gain can be obtained. The dependence of the switching fields on the angle of the applied field shows that none of the three models are easily affected by the stray field of a magnetic head.
基金supported by Beijing Natural Science Foundation(No.Z210016).
文摘The ordered membrane electrode assembly(MEA)has gained much attention because of its potential in improving mass transfer.Here,a comprehensive study was conducted on the influence of the patterned microporous layer(MPL)on the proton exchange membrane fuel cell performances.When patterned MPL is employed,grooves are generated between the catalyst layer and the gas diffusion layer.It is found that the grooves do not increase the contact resistance,and it is beneficial for water retention.When the MEA works under low humidity scenarios,the MEA with patterned MPL illustrated higher performance,due to the reduced inner resistance caused by improved water retention,leading to increased ionic conductivity.However,when the humidity is higher than 80%or working under high current density,the generated water accumulated in the grooves and hindered the oxygen mass transport,leading to a reduced MEA performance.
文摘Chinese stock market is a developing one. In the present stages, to control scientifically the expansion speed and avoid drastic fluctuations is an important problem. Through analysis of plenty of data of SSE(Shanghai Stock Exchange) Index and relevant economic quotas, we find that the problem of predicting SSE Index is a typical multi variable, nonlinear one. On the basis of the analysis, we apply the technology of fuzzy pattern recognition, to the optimum pattern division of SSE Index's time alignments from Jan. of 1993 to Dec. of 1997, and get a balanced pattern of the stock index fluctuation. At the same time, by using database technology, we find the optimum expansion speed of Shanghai stock, which can make SSE Index fluctuate steadily within the balanced area. We verified this model with the latest data and found it coincides with the reality perfectly. So it has the practical value and provides the policy makers with a scientific basis in controlling the expansion pace.
基金supported by the National Natural Science Foundation of China(52304067,62273213)the Natural Science Foundation of Shandong Province of China(ZR2021QE073)+1 种基金the Natural Science Foundation of Shandong Province for Innovation and Development Joint Funds(ZR2022LZH001)the China Postdoctoral Science Foundation(2023M732111)。
文摘Liquid hydrogen storage and transportation is an effective method for large-scale transportation and utilization of hydrogen energy. Revealing the flow mechanism of cryogenic working fluid is the key to optimize heat exchanger structure and hydrogen liquefaction process(LH2). The methods of cryogenic visualization experiment, theoretical analysis and numerical simulation are conducted to study the falling film flow characteristics with the effect of co-current gas flow in LH2spiral wound heat exchanger.The results show that the flow rate of mixed refrigerant has a great influence on liquid film spreading process, falling film flow pattern and heat transfer performance. The liquid film of LH2mixed refrigerant with column flow pattern can not uniformly and completely cover the tube wall surface. As liquid flow rate increases, the falling film flow pattern evolves into sheet-column flow and sheet flow, and liquid film completely covers the surface of tube wall. With the increase of shear effect of gas-phase mixed refrigerant in the same direction, the liquid film gradually becomes unstable, and the flow pattern eventually evolves into a mist flow.
基金Natural Science Foundation of China (40675013)Foundation project of Nanjing University of Information Science & TechnologyProject on natural science for universities and colleges in Jiangsu province
文摘On March 16–17, 2008, a sea fog occurred in Dianbai in the west of Guangdong Province and was accompanied by a high-pressure synoptic system. Using comprehensive observation datasets, this study analyzes the evolution of liquid water content during this sea fog and investigates the relationships between liquid water content and the average diameters and count densities of fog droplets, air temperature, wind speed and turbulence exchanges. The main results are presented as follows. (1) The sea fog showed a quasi-periodic oscillation characteristic, i.e., it developed, disappeared and then developed again. (2) During the sea fog, the number of fog droplets changed significantly while the changes in average diameter of the fog droplets were relatively small. The development and disappearance of the sea fog correlated significantly with the fog droplet numbers. (3) The air-cooling mechanism played a significant role in sea fog formation and development. However, the influences of this mechanism were not evident during fog persistence. (4) During sea fog formation, weak turbulence exchanges were helpful for fog formation. During sea fog development and persistence, liquid water content increased when turbulence exchanges weakened, and vice versa. The changes in turbulence exchanges were closely related to the quasi-periodic oscillations observed in sea fog presence.
文摘The article presents multi-pattern formation exchange of mobile robots according to the image signals, programs motion paths using A* searching algorithm, and avoids the collision points of motion paths. The system contains an image system, a grid based motion platform, some wireless Radio Frequency (RF) modules and five mobile robots. We use image recognition algorithm to classify variety pattern formation according to variety Quick Response (QR) code symbols on the user interface of the supervised computer. The supervised computer controls five mobile robots to execute formation exchange and presents the movement scenario on the grid based motion platform. We have been developed some pattern formations according to game applications, such as long snake pattern formation, phalanx pattern formation, crane wing pattern formation, sword pattern formation, cone pattern formation, sward pattern tbrmation, T pattern formation, rectangle pattern formation and so on. We develop the user interface of the multi-robot system to program motion paths for variety pattern formation exchange according to the minimum displacement. In the experimental results, the supervised computer recognizes the various QR-code symbols using image system and decides which pattern formation to be selected on real-time. Mobile robots can receive the pattern formation command from the supervised computer, present the movement scenario from the original pattern formation to the assigned pattern formation on the motion platform, and avoid other mobile robots on real-time.
文摘Using numerical methodology, the flow fields between two corrugated plates with different values of the corrugation inclination angle β were simulated. The simulation results directly indicate that β affects the flow pattern between corrugated plates, and the results are in good agreement with the experimental results reported by interrelated literature. The results show that the flow pattern between the two plates changes from "double cross-flow" to "zigzag flow" with the increase in β. The reason for the effect on the flow pattern between the two corrugated plates was discussed from the view of the variation of momentum in the direction of corrugation with the variation in β.