Based on monthly river runoff and meteorological data, a method of Morlet wavelet transform was used to analyze the multiple time scale characteristics of river runoff in the Dagujia River Basin, Yantai City, Shandong...Based on monthly river runoff and meteorological data, a method of Morlet wavelet transform was used to analyze the multiple time scale characteristics of river runoff in the Dagujia River Basin, Yantai City, Shandong Province. The results showed that the total annual river runoffin the Dagujia River Basin decreased significantly from 1966 to 2004, and the rate of decrease was 48× 10^6ma/10yr, which was higher than the mean value of most rivers in China. Multiple time scale characteristics existed, which accounted for different aspects of the changes in annual river runoff, and the major periods of the runofftime series were identified as about 28 years, 14 years and 4 years with decreasing levels of fluctuation. The river runoff evolution process was controlled by changes in precipitation to a certain extent, but it was also greatly influenced by human activities. Also, for different time periods and scales, the impacts of climate changes and human activities on annual river runoff evolution occurred at the same time. Changes in the annual river runoffwere mainly associated with climate change before the 1980s and with human activities after 1981.展开更多
The characteristics of climatic change and fiver runoff, as well as the response of fiver runoff to climatic change in the northern Xinjiang are analyzed on the basis of the hydrological and meteorological data over t...The characteristics of climatic change and fiver runoff, as well as the response of fiver runoff to climatic change in the northern Xinjiang are analyzed on the basis of the hydrological and meteorological data over the last 50 years by the methods of Mann-Kendall nonparametric test and the nonlinear regression model. The results show that: 1) The temperature and the precipitation increased significantly in the whole northern Xinjiang, but the precipitation displayed no obvious change, or even a decreasing trend in the northern mountainous area of the northern Xinjiang. 2) River runoff varied in different regions in the northern Xinjiang. It significantly increased in the northern slope of the Tianshan Mountains and the north of the northern Xinjiang (p = 0.05), while slightly ificreased in the west of the northern Xinjiang. 3) North Atlantic Oscillation (NAO) affects fiver runoff by influencing temperature and precipitation. The NAO and precipitation had apparent significant correlations with the fiver runoff, but the temperature did not in the northern Xinjiang. Since the mid-1990s fiver runoff increase was mainly caused by the increasing temperature in the northern slope of the Tianshan Mountains and the north of the northern Xinjiang. Increased precipitation resulted in increased fiver runoff in the west of the northern Xinjiang.展开更多
Study on morphological changes of a bay can help to identify the effects of anthropogenic activities on coastal environ-ment and guide the exploration of marine resources.In this paper,morphological data including coa...Study on morphological changes of a bay can help to identify the effects of anthropogenic activities on coastal environ-ment and guide the exploration of marine resources.In this paper,morphological data including coastline and water areas in five discrete years between 1968 and 2015 were selected and extracted from the remote sensing images and historical marine charts to study the morphological changes in Laizhou Bay(LZB),one of the bays in the southwest of the Bohai Sea.A systematic analysis on spatial variations of the coastline and the surface areas of different types of waters in LZB was conducted.The results showed that the surface area of LZB was decreased by 1253.2km^(2)in the last half century,which is 17.4%of the total in the 1970s.The areas of the natural wetland and the intertidal zone were decreased by 17.2%and 56.1%,respectively,and the average water depth varied from 9.05 m to 8.16m at low tide level from 1968 to 2015.The coastline and shape variations of the bay turned to be complex after the 1980s,and the shape index of LZB showed an increasing trend in more recent years.The centroid of the bay generally migrated to the northeast direction,i.e.,the direction of the center of the Bohai Sea,and the shrinking direction of the bay was consistent with the migration direction of the coastline.The reclamation area during 1968-2015 in LZB was 1201.7km^(2),and 94.1%was in the inter-tidal zone.The overall morphological change of the bay during the last half century was mainly controlled by the coastal reclamation activities,and the Yellow River runoff including the river course change and sediment load variation was also an important control-ling factor.展开更多
In this study,we analyzed the hydrological and meteorological data from the Syr Darya River Basin during the period of 1930–2015 to investigate variations in river runoff and the impacts of climate change and human a...In this study,we analyzed the hydrological and meteorological data from the Syr Darya River Basin during the period of 1930–2015 to investigate variations in river runoff and the impacts of climate change and human activities on river runoff.The Syr Darya River,which is supplied by snow and glacier meltwater upstream,is an important freshwater source for Central Asia,as nearly half of the population is concentrated in this area.River runoff in this arid region is sensitive to climate change and human activities.Therefore,estimation of the climatic and hydrological changes and the quantification of the impacts of climate change and human activities on river runoff are of great concern and important for regional water resources management.The long-term trends of hydrological time series from the selected 11 hydrological stations in the Syr Darya River Basin were examined by non-parametric methods,including the Pettitt change point test and Mann-Kendall trend tests.It was found that 8 out of 11 hydrological stations showed significant downward trends in river runof f.Change of river runoff variations occurred in the year around 1960.Moreover,during the study period(1930–2015),annual mean temperature,annual precipitation,and annual potential evapotranspiration in the river basin increased substantially.We employed hydrological sensitivity method to evaluate the impacts of climate change and human activities on river runoff based on precipitation and potential evapotranspiration.It was estimated that human activities accounted for over 82.6%–98.7%of the reduction in river runoff,mainly owing to water withdrawal for irrigation purpose.The observed variations in river runoff can subsequently lead to adverse ecological consequences from an ecological and regional water resources management perspective.展开更多
Responses of global ocean circulation and temperature to freshwater runoff from major rivers were studied by blocking regional runoff in the global ocean general circulation model (OGCM) developed at the Massachuset...Responses of global ocean circulation and temperature to freshwater runoff from major rivers were studied by blocking regional runoff in the global ocean general circulation model (OGCM) developed at the Massachusetts Institute of Technology. Runoff into the tropical Atlantic, the western North Pacific, and the Bay of Bengal and northern Arabian Sea were selectively blocked. The blocking of river runoff first resulted in a salinity increase near the river mouths (2 practical salinity units). The saltier and, therefore, denser water was then transported to higher latitudes in the North Atlantic, North Pacific, and southern Indian Ocean by the mean currents. The subsequent density contrasts between northern and southern hemispheric oceans resulted in changes in major ocean currents. These anomalous ocean currents lead to significant temperature changes (I^C -2~C) by the resulting anomalous heat transports. The current and temperature anomalies created by the blocked river runoff propagated from one ocean basin to others via coastal and equatorial Kelvin waves. This study suggests that river runoff may be playing an important role in oceanic salinity, temperature, and circulations; and that partially or fully blocking major rivers to divert freshwater for societal purposes might significantly change ocean salinity, circulations, temperature, and atmospheric climate. Further studies are necessary to assess the role of river runoff in the coupled atmosphere-ocean system.展开更多
The relationship between North Atlantic Oscillations (NAO) and Aksu River Runoff (ARR) was investigated by using the wavelet transform (WT), cross wavelet transform (CWT), correlation and linear trend analyses...The relationship between North Atlantic Oscillations (NAO) and Aksu River Runoff (ARR) was investigated by using the wavelet transform (WT), cross wavelet transform (CWT), correlation and linear trend analyses, and abrupt change test. The main results are as follows the interannual/decadal variation and period analyses of ARR and NAO reveal that the both were close correlated each other; the CWT indicates that the correlation was good between ARR and NAO at all periods in the 1990s, because the significant correlation areas mainly concentrated in the 1990s; the variations in the trend strength of ARR and NAO were consistent; the abrupt change of NAO was also temporally consistent with that of ARR, which exerted impact on the Aksu River Basin (ARB) climate and then the ARR through atmospheric circulation variation.展开更多
River runoff is affected by many factors, including long-term effects such as climate change that alter rainfall-runoff relationships, and short-term effects related to human intervention(e.g., dam construction, land-...River runoff is affected by many factors, including long-term effects such as climate change that alter rainfall-runoff relationships, and short-term effects related to human intervention(e.g., dam construction, land-use and land-cover change(LUCC)). Discharge from the Yellow River system has been modified in numerous ways over the past century, not only as a result of increased demands for water from agriculture and industry, but also due to hydrological disturbance from LUCC, climate change and the construction of dams. The combined effect of these disturbances may have led to water shortages. Considering that there has been little change in long-term precipitation, dramatic decreases in water discharge may be attributed mainly to human activities, such as water usage, water transportation and dam construction. LUCC may also affect water availability, but the relative contribution of LUCC to changing discharge is unclear. In this study, the impact of LUCC on natural discharge(not including anthropogenic usage) is quantified using an attribution approach based on satellite land cover and discharge data. A retention parameter is used to relate LUCC to changes in discharge. We find that LUCC is the primary factor, and more dominant than climate change, in driving the reduction in discharge during 1956–2012, especially from the mid-1980 s to the end-1990 s. The ratio of each land class to total basin area changed significantly over the study period. Forestland and cropland increased by about 0.58% and 1.41%, respectively, and unused land decreased by 1.16%. Together, these variations resulted in changes in the retention parameter, and runoff generation showed a significant decrease after the mid-1980 s. Our findings highlight the importance of LUCC to runoff generation at the basin scale, and improve our understanding of the influence of LUCC on basin-scale hydrology.展开更多
Temperature and precipitation play an important role in the distribution of intra-annual runoff by influencing the timing and contribution of different water sources.In the northern and southern slopes of the Middle T...Temperature and precipitation play an important role in the distribution of intra-annual runoff by influencing the timing and contribution of different water sources.In the northern and southern slopes of the Middle Tianshan Mountains in China,the water sources of rivers are similar;however,the proportion and dominance of water sources contributing to runoff are different.Using the Manas River watershed in the northern slope and the Kaidu River watershed in the southern slope of the Middle Tianshan Mountains as case studies,we investigated the changes in annual runoff under climate change.A modified hydrological model was used to simulate runoff in the Kaidu River and Manas River watersheds.The results indicated that runoff was sensitive to precipitation variation in the southern slope and to temperature variation in the northern slope of the Middle Tianshan Mountains.Variations in temperature and precipitation substantially influence annual and seasonal runoff.An increase in temperature did not influence the volume of spring runoff;but it resulted in earlier spring peaks with higher levels of peak flow.Damages caused by spring peak flow from both slopes of the Middle Tianshan Mountains should be given more attention in future studies.展开更多
Taking the nonlinear nature of runoff system into account,and combining auto-regression method and multi-regression method,a Nonlinear Mixed Regression Model (NMR) was established to analyze the impact of temperature ...Taking the nonlinear nature of runoff system into account,and combining auto-regression method and multi-regression method,a Nonlinear Mixed Regression Model (NMR) was established to analyze the impact of temperature and precipitation changes on annual river runoff process. The model was calibrated and verified by using BP neural network with observed meteorological and runoff data from Daiying Hydrological Station in the Chaohe River of Hebei Province in 1956–2000. Compared with auto-regression model,linear multi-regression model and linear mixed regression model,NMR can improve forecasting precision remarkably. Therefore,the simulation of climate change scenarios was carried out by NMR. The results show that the nonlinear mixed regression model can simulate annual river runoff well.展开更多
Background:Assessment of the reasons for the ambiguous influence of forests on the structure of the water balance is the subject of heated debate among forest hydrologists.Influencing the components of total evaporati...Background:Assessment of the reasons for the ambiguous influence of forests on the structure of the water balance is the subject of heated debate among forest hydrologists.Influencing the components of total evaporation,forest vegetation makes a significant contribution to the process of runoff formation,but this process has specific features in different geographical zones.The issues of the influence of forest vegetation on river runoff in the zonal aspect have not been sufficiently studied.Results:Based on the analysis of the dependence of river runoff on forest cover,using the example of nine catchments located in the forest-tundra,northern and middle taiga of Northern Eurasia,it is shown that the share of forest cover in the total catchment area(percentage of forest cover,FCP)has different effects on runoff formation.Numerical experiments with the developed empirical models have shown that an increase in forest cover in the catchment area in northern latitudes contributes to an increase in runoff,while in the southern direction(in the middle taiga)extensive woody cover of catchments“works”to reduce runoff.The effectiveness of geographical zonality in regards to the influence of forests on runoff is more pronounced in the forest-tundra zone than in the zones of northern and middle taiga.Conclusion:The study of this problem allowed us to analyze various aspects of the hydrological role of forests,and to show that forest ecosystems,depending on environmental conditions and the spatial distribution of forest cover,can transform water regimes in different ways.Despite the fact that the process of river runoff formation is controlled by many factors,such as temperature conditions,precipitation regime,geomorphology and the presence of permafrost,the models obtained allow us to reveal general trends in the dependence of the annual river runoff on the percentage of forest cover,at the level of catchments.The results obtained are consistent with the concept of geographic determinism,which explains the contradictions that exist in assessing the hydrological role of forests in various geographical and climatic conditions.The results of the study may serve as the basis for regulation of the forest cover of northern Eurasian river basins in order to obtain the desired hydrological effect depending on environmental and economic conditions.展开更多
An increasing amount of freshwater has been observed to enter the Arctic Ocean from the six largest Eurasian rivers over the past several decades. The increasing trend is projected to continue in the twenty-first cent...An increasing amount of freshwater has been observed to enter the Arctic Ocean from the six largest Eurasian rivers over the past several decades. The increasing trend is projected to continue in the twenty-first century according to Coupled Model Intercomparison Project Phase 5 (CMIP5) coupled models. The present study found that water flux from rivers to the Arctic Ocean at the end of the century will be 1.4 times that in 1950 according to CMIP5 projection results under Representative Concentration Pathway 8.5. The effect of increasing Arctic river runoff on the Atlantic meridional overturning circulation (AMOC) was investigated using an ocean-ice coupled model. Results obtained from two numerical experiments show that 100, 150 and 200 years after the start of an increase in the Arctic river runoff at a rate of 0.22%/a, the AMOC will weaken by 0.6 (3%), 1.2 (7%) and 1.8 (11%) Sv. AMOC weakening is mainly caused by freshwater transported from increasing Arctic river runoff inhibiting the formation of North Atlantic Deep Water (NADW). As the AMOC weakens, the deep seawater age will become older throughout the Atlantic Basin owing to the increasing of Arctic runoff.展开更多
Time series measurements were conducted on suspended sediment and current velocity from neap tide to spring tide in the South Branch of the upper Changjiang Estuary in the summer of 2011. Strong flood-ebb asymmetry in...Time series measurements were conducted on suspended sediment and current velocity from neap tide to spring tide in the South Branch of the upper Changjiang Estuary in the summer of 2011. Strong flood-ebb asymmetry in the current velocity was observed in the South Branch as a result of high river runoff and tide deformation, in which the magnitude and duration of ebb currents were significantly greater than those of flood currents. The suspended sediment concentration(SSC) and suspended median grain size also exhibited remarkable flood-ebb variation; these variables were considerably larger during the ebb than during the flood and increased from neap to spring tide. Affected by the strong asymmetry in the current velocity and SSC between the flood and ebb,suspended sediment flux during the ebb was notably larger than during the flood, and a seaward tidal net flux was observed in each tidal cycle. The balance of sediment flux illustrates that the seaward sediment transport was dominated by river flow and tidal trapping and the landward sediment transport was dominated by the Stokes drift and the shear effect. Notable resuspension occurred during the spring and moderate tides. The critical velocity for the resuspension of bed sediments was estimated based on the correlation between current velocity with SSC and suspended median grain size. The results show that the critical velocity was approximately 40 cm/s during the flood phases and approximately 80 cm/s during the ebb phases because the surficial flood bed sediments located in the lower reach are much finer than the surficial ebb bed sediments located in the upper reach. The flood-ebb variation in the critical erosion velocity has significant effect on the intratidal variation of SSC and sediment transport process, and it is a common phenomenon in many estuaries of the world due to the complicated spatial distribution of bed sediments.展开更多
As a conservative tracer, oxygen isotopes in seawater are widely used for water mass analysis, along with temperature and salinity. In this study, seawater oxygen-18 datasets in the Canada Basin during 1967-2010 were ...As a conservative tracer, oxygen isotopes in seawater are widely used for water mass analysis, along with temperature and salinity. In this study, seawater oxygen-18 datasets in the Canada Basin during 1967-2010 were obtained from the four cruises of the Chinese National Arctic Research Expedition (1999, 2003, 2008, and 2010) and the NASA database. Fractions of sea ice meltwater and river runoffwere determined from the salinity-5180 system. Our results showed that the river runoff decreased from the south to the north in the Canada Basin. The enhanced amount of river runoff observed in the southern Canada Basin may originate from the Mackenzie River, transported by the Beaufort Gyre. The river runoff component showed maximum fractions during 1967-1969, 1978-1979, 1984-1985, 1993-1994, and 2008-2010, indicating the refresh time of the river runoffwas 5.0-16.0 a in the Canada Basin. The temporal variation of the river runoffwas related to the change of the Arctic Oscillation (AO) index, suggesting the freshwater stored in the Canada Basin was affected by surface sea ice drift and water mass movement driven by atmospheric circulation.展开更多
According to climate features and river runoff conditions, Xinjiang could be divided into three research areas: The Altay-Tacheng region, the Tianshan Mountain region and the northern slope of the Kunlun Mountains. U...According to climate features and river runoff conditions, Xinjiang could be divided into three research areas: The Altay-Tacheng region, the Tianshan Mountain region and the northern slope of the Kunlun Mountains. Utilizing daily observations from 12 sounding stations and the annual runoff dataset from 34 hydrographical stations in Xinjiang for the period 1960-2002, the variance of the summertime 0℃ level height and the changing trends of river runoff are analyzed both qualitatively and quantitatively, through trend contrast of curves processed by a 5-point smoothing procedure and linear correlation. The variance of the summertime 0℃ level height in Xinjiang correlates well with that of the annual river runoff, especially since the early 1990s, but it differs from region to region, with both the average height of the 0℃ level and runoff quantity significantly increasing over time in the Al- tay-Tacheng and Tianshan Mountain regions but decreasing on the northern slope of the Kunlun Mountains. The correlation holds for the whole of Xinjiang as well as the three indi- vidual regions, with a 0.01 significance level. This indicates that in recent years, climate change in Xinjiang has affected not only the surface layer but also the upper levels of the atmosphere, and this raising and lowering of the summertime 0℃ level has a direct impact on the warming and wetting process in Xinjiang and the amount of river runoff. Warming due to climate change increases the height of the 0℃ level, but also speeds up, ice-snow melting in mountain regions, which in turn increases river runoff, leading to a season of plentiful water instead of the more normal low flow period.展开更多
In the near-shore waters, the actual flow is mainly induced by tide, wind and salinity, and the river water runoff should also be included as a component in the estuary waters. The interactions among these major compo...In the near-shore waters, the actual flow is mainly induced by tide, wind and salinity, and the river water runoff should also be included as a component in the estuary waters. The interactions among these major components are very complicated. Many approaches were proposed to study isolated tide and wind-driven currents or run-off based on the measured velocity, with all its components taken as a whole. In this article, firstly, based on the actual hydrodynamic characteristics of estuarine and coastal waters, an approach is proposed to separate the measured velocity by considering the theoretical current velocity profiles and using the least squares method. The vertical structures of tidal, wind-driven currents, density current and runoff can be obtained as well as their proportions in the measured velocity. Then, this approach is applied to the analysis of velocity data obtained in the North Branch of Yangtze River estuary and of laboratory test data. The results are found to be satisfactory. Finally, this approach is used to separate the measured velocity in the South Branch of Yangtze River estuary, to determine not only the bed friction velocity and roughness height, but also the surface wind stress, and to estimate the wind velocity data above the water surface. The results show that this method is simple in principle, practical in use, and reasonable in obtained results. So it can be used to effectively analyze the field data.展开更多
基金Under the auspices of National Key Science and Technology Support Program of China (No. 2006BCA01A07-2)National Natural Science Foundation of China (No. 40101005)Science Foundation of Shandong Province, China (No. Q02E03)
文摘Based on monthly river runoff and meteorological data, a method of Morlet wavelet transform was used to analyze the multiple time scale characteristics of river runoff in the Dagujia River Basin, Yantai City, Shandong Province. The results showed that the total annual river runoffin the Dagujia River Basin decreased significantly from 1966 to 2004, and the rate of decrease was 48× 10^6ma/10yr, which was higher than the mean value of most rivers in China. Multiple time scale characteristics existed, which accounted for different aspects of the changes in annual river runoff, and the major periods of the runofftime series were identified as about 28 years, 14 years and 4 years with decreasing levels of fluctuation. The river runoff evolution process was controlled by changes in precipitation to a certain extent, but it was also greatly influenced by human activities. Also, for different time periods and scales, the impacts of climate changes and human activities on annual river runoff evolution occurred at the same time. Changes in the annual river runoffwere mainly associated with climate change before the 1980s and with human activities after 1981.
基金Under the auspices of Knowledge Innovation Programs of Chinese Academy of Sciences (No. KZCX2-YW-127, KZCX2-XB2-03-01, KZCX2-Q10-5-4)
文摘The characteristics of climatic change and fiver runoff, as well as the response of fiver runoff to climatic change in the northern Xinjiang are analyzed on the basis of the hydrological and meteorological data over the last 50 years by the methods of Mann-Kendall nonparametric test and the nonlinear regression model. The results show that: 1) The temperature and the precipitation increased significantly in the whole northern Xinjiang, but the precipitation displayed no obvious change, or even a decreasing trend in the northern mountainous area of the northern Xinjiang. 2) River runoff varied in different regions in the northern Xinjiang. It significantly increased in the northern slope of the Tianshan Mountains and the north of the northern Xinjiang (p = 0.05), while slightly ificreased in the west of the northern Xinjiang. 3) North Atlantic Oscillation (NAO) affects fiver runoff by influencing temperature and precipitation. The NAO and precipitation had apparent significant correlations with the fiver runoff, but the temperature did not in the northern Xinjiang. Since the mid-1990s fiver runoff increase was mainly caused by the increasing temperature in the northern slope of the Tianshan Mountains and the north of the northern Xinjiang. Increased precipitation resulted in increased fiver runoff in the west of the northern Xinjiang.
基金This study was financially supported by the National Science Foundation of China(NSFC)-Shandong Joint Funds(Nos.U1606404,U1906215)the Ocean Spe-cial Funds for Scientific Research on Public Causes(No.201205001).
文摘Study on morphological changes of a bay can help to identify the effects of anthropogenic activities on coastal environ-ment and guide the exploration of marine resources.In this paper,morphological data including coastline and water areas in five discrete years between 1968 and 2015 were selected and extracted from the remote sensing images and historical marine charts to study the morphological changes in Laizhou Bay(LZB),one of the bays in the southwest of the Bohai Sea.A systematic analysis on spatial variations of the coastline and the surface areas of different types of waters in LZB was conducted.The results showed that the surface area of LZB was decreased by 1253.2km^(2)in the last half century,which is 17.4%of the total in the 1970s.The areas of the natural wetland and the intertidal zone were decreased by 17.2%and 56.1%,respectively,and the average water depth varied from 9.05 m to 8.16m at low tide level from 1968 to 2015.The coastline and shape variations of the bay turned to be complex after the 1980s,and the shape index of LZB showed an increasing trend in more recent years.The centroid of the bay generally migrated to the northeast direction,i.e.,the direction of the center of the Bohai Sea,and the shrinking direction of the bay was consistent with the migration direction of the coastline.The reclamation area during 1968-2015 in LZB was 1201.7km^(2),and 94.1%was in the inter-tidal zone.The overall morphological change of the bay during the last half century was mainly controlled by the coastal reclamation activities,and the Yellow River runoff including the river course change and sediment load variation was also an important control-ling factor.
基金This research was funded by the National Natural Science Foundation of China(U1603242)the Science and Technology Service Network Initiative(STS)Project in the Chinese Academy of Sciences(KFJ-STS-QYZD-071)+1 种基金the Training Program for Youth Innovative Talents in Science and Technology in Xinjiang Uygur Autonomous Regions(QN2016BS0052)the CAS"Light of West China"Program(2017-XBQNXZ-B-012).
文摘In this study,we analyzed the hydrological and meteorological data from the Syr Darya River Basin during the period of 1930–2015 to investigate variations in river runoff and the impacts of climate change and human activities on river runoff.The Syr Darya River,which is supplied by snow and glacier meltwater upstream,is an important freshwater source for Central Asia,as nearly half of the population is concentrated in this area.River runoff in this arid region is sensitive to climate change and human activities.Therefore,estimation of the climatic and hydrological changes and the quantification of the impacts of climate change and human activities on river runoff are of great concern and important for regional water resources management.The long-term trends of hydrological time series from the selected 11 hydrological stations in the Syr Darya River Basin were examined by non-parametric methods,including the Pettitt change point test and Mann-Kendall trend tests.It was found that 8 out of 11 hydrological stations showed significant downward trends in river runof f.Change of river runoff variations occurred in the year around 1960.Moreover,during the study period(1930–2015),annual mean temperature,annual precipitation,and annual potential evapotranspiration in the river basin increased substantially.We employed hydrological sensitivity method to evaluate the impacts of climate change and human activities on river runoff based on precipitation and potential evapotranspiration.It was estimated that human activities accounted for over 82.6%–98.7%of the reduction in river runoff,mainly owing to water withdrawal for irrigation purpose.The observed variations in river runoff can subsequently lead to adverse ecological consequences from an ecological and regional water resources management perspective.
基金supported by NASA grants NAG5-11785NASA grants NAG5-12729
文摘Responses of global ocean circulation and temperature to freshwater runoff from major rivers were studied by blocking regional runoff in the global ocean general circulation model (OGCM) developed at the Massachusetts Institute of Technology. Runoff into the tropical Atlantic, the western North Pacific, and the Bay of Bengal and northern Arabian Sea were selectively blocked. The blocking of river runoff first resulted in a salinity increase near the river mouths (2 practical salinity units). The saltier and, therefore, denser water was then transported to higher latitudes in the North Atlantic, North Pacific, and southern Indian Ocean by the mean currents. The subsequent density contrasts between northern and southern hemispheric oceans resulted in changes in major ocean currents. These anomalous ocean currents lead to significant temperature changes (I^C -2~C) by the resulting anomalous heat transports. The current and temperature anomalies created by the blocked river runoff propagated from one ocean basin to others via coastal and equatorial Kelvin waves. This study suggests that river runoff may be playing an important role in oceanic salinity, temperature, and circulations; and that partially or fully blocking major rivers to divert freshwater for societal purposes might significantly change ocean salinity, circulations, temperature, and atmospheric climate. Further studies are necessary to assess the role of river runoff in the coupled atmosphere-ocean system.
基金Special Fund for Social Public Good Project of the Ministry of Science and Technology,No.2004DIB3J118No.2005DIB6J113+1 种基金GYHY (QX) 2007-6-8Desert Meteorological Fund,No.2007011
文摘The relationship between North Atlantic Oscillations (NAO) and Aksu River Runoff (ARR) was investigated by using the wavelet transform (WT), cross wavelet transform (CWT), correlation and linear trend analyses, and abrupt change test. The main results are as follows the interannual/decadal variation and period analyses of ARR and NAO reveal that the both were close correlated each other; the CWT indicates that the correlation was good between ARR and NAO at all periods in the 1990s, because the significant correlation areas mainly concentrated in the 1990s; the variations in the trend strength of ARR and NAO were consistent; the abrupt change of NAO was also temporally consistent with that of ARR, which exerted impact on the Aksu River Basin (ARB) climate and then the ARR through atmospheric circulation variation.
基金Under the auspices of Key Program of Chinese Academy of Sciences(No.KJZD-EW-TZ-G10)National Key Research and Development Program of China(No.2016YFA0602704)Breeding Project of Institute of Geographic Sciences and Natural Resources Research,CAS(No.TSYJS04)
文摘River runoff is affected by many factors, including long-term effects such as climate change that alter rainfall-runoff relationships, and short-term effects related to human intervention(e.g., dam construction, land-use and land-cover change(LUCC)). Discharge from the Yellow River system has been modified in numerous ways over the past century, not only as a result of increased demands for water from agriculture and industry, but also due to hydrological disturbance from LUCC, climate change and the construction of dams. The combined effect of these disturbances may have led to water shortages. Considering that there has been little change in long-term precipitation, dramatic decreases in water discharge may be attributed mainly to human activities, such as water usage, water transportation and dam construction. LUCC may also affect water availability, but the relative contribution of LUCC to changing discharge is unclear. In this study, the impact of LUCC on natural discharge(not including anthropogenic usage) is quantified using an attribution approach based on satellite land cover and discharge data. A retention parameter is used to relate LUCC to changes in discharge. We find that LUCC is the primary factor, and more dominant than climate change, in driving the reduction in discharge during 1956–2012, especially from the mid-1980 s to the end-1990 s. The ratio of each land class to total basin area changed significantly over the study period. Forestland and cropland increased by about 0.58% and 1.41%, respectively, and unused land decreased by 1.16%. Together, these variations resulted in changes in the retention parameter, and runoff generation showed a significant decrease after the mid-1980 s. Our findings highlight the importance of LUCC to runoff generation at the basin scale, and improve our understanding of the influence of LUCC on basin-scale hydrology.
基金funded by the National Basic Research Program of China (2012CB956204)the Special Funds for the Key Laboratory of the Xinjiang Uygur Autonomous Region (2014KL015)the Key Deployment Project of Chinese Academy of Sciences (KZZD-EW-12-2)
文摘Temperature and precipitation play an important role in the distribution of intra-annual runoff by influencing the timing and contribution of different water sources.In the northern and southern slopes of the Middle Tianshan Mountains in China,the water sources of rivers are similar;however,the proportion and dominance of water sources contributing to runoff are different.Using the Manas River watershed in the northern slope and the Kaidu River watershed in the southern slope of the Middle Tianshan Mountains as case studies,we investigated the changes in annual runoff under climate change.A modified hydrological model was used to simulate runoff in the Kaidu River and Manas River watersheds.The results indicated that runoff was sensitive to precipitation variation in the southern slope and to temperature variation in the northern slope of the Middle Tianshan Mountains.Variations in temperature and precipitation substantially influence annual and seasonal runoff.An increase in temperature did not influence the volume of spring runoff;but it resulted in earlier spring peaks with higher levels of peak flow.Damages caused by spring peak flow from both slopes of the Middle Tianshan Mountains should be given more attention in future studies.
基金Under the auspices of National Natural Science Foundation of China (No. 50809004)
文摘Taking the nonlinear nature of runoff system into account,and combining auto-regression method and multi-regression method,a Nonlinear Mixed Regression Model (NMR) was established to analyze the impact of temperature and precipitation changes on annual river runoff process. The model was calibrated and verified by using BP neural network with observed meteorological and runoff data from Daiying Hydrological Station in the Chaohe River of Hebei Province in 1956–2000. Compared with auto-regression model,linear multi-regression model and linear mixed regression model,NMR can improve forecasting precision remarkably. Therefore,the simulation of climate change scenarios was carried out by NMR. The results show that the nonlinear mixed regression model can simulate annual river runoff well.
基金supported by the basic project of the IF SB RAS“Theoretical Foundations of Preserving the Ecological and Resource Potential of Siberian Forests under the Conditions of Increasing Anthropogenic Press and Climate Anomalies”,No.AAAA-A17–117101940014-9(0356–2019-0027)The reported study was funded by RFBR(project number 20–05-00095).
文摘Background:Assessment of the reasons for the ambiguous influence of forests on the structure of the water balance is the subject of heated debate among forest hydrologists.Influencing the components of total evaporation,forest vegetation makes a significant contribution to the process of runoff formation,but this process has specific features in different geographical zones.The issues of the influence of forest vegetation on river runoff in the zonal aspect have not been sufficiently studied.Results:Based on the analysis of the dependence of river runoff on forest cover,using the example of nine catchments located in the forest-tundra,northern and middle taiga of Northern Eurasia,it is shown that the share of forest cover in the total catchment area(percentage of forest cover,FCP)has different effects on runoff formation.Numerical experiments with the developed empirical models have shown that an increase in forest cover in the catchment area in northern latitudes contributes to an increase in runoff,while in the southern direction(in the middle taiga)extensive woody cover of catchments“works”to reduce runoff.The effectiveness of geographical zonality in regards to the influence of forests on runoff is more pronounced in the forest-tundra zone than in the zones of northern and middle taiga.Conclusion:The study of this problem allowed us to analyze various aspects of the hydrological role of forests,and to show that forest ecosystems,depending on environmental conditions and the spatial distribution of forest cover,can transform water regimes in different ways.Despite the fact that the process of river runoff formation is controlled by many factors,such as temperature conditions,precipitation regime,geomorphology and the presence of permafrost,the models obtained allow us to reveal general trends in the dependence of the annual river runoff on the percentage of forest cover,at the level of catchments.The results obtained are consistent with the concept of geographic determinism,which explains the contradictions that exist in assessing the hydrological role of forests in various geographical and climatic conditions.The results of the study may serve as the basis for regulation of the forest cover of northern Eurasian river basins in order to obtain the desired hydrological effect depending on environmental and economic conditions.
基金The Project of Comprehensive Evaluation of Polar Areas on Global and Regional Climate Changes under contract No.CHINARE2016-04-04the National Natural Science Foundation of China under contract No.41406027+1 种基金the NSFC-Shandong Joint Fund for Marine Science Research Centers under contract No.U1406404the Basic Research Operating Funds of The First Institute of Oceanography,State Oceanic Administration of China under contract Nos 2015P03 and 2015P01
文摘An increasing amount of freshwater has been observed to enter the Arctic Ocean from the six largest Eurasian rivers over the past several decades. The increasing trend is projected to continue in the twenty-first century according to Coupled Model Intercomparison Project Phase 5 (CMIP5) coupled models. The present study found that water flux from rivers to the Arctic Ocean at the end of the century will be 1.4 times that in 1950 according to CMIP5 projection results under Representative Concentration Pathway 8.5. The effect of increasing Arctic river runoff on the Atlantic meridional overturning circulation (AMOC) was investigated using an ocean-ice coupled model. Results obtained from two numerical experiments show that 100, 150 and 200 years after the start of an increase in the Arctic river runoff at a rate of 0.22%/a, the AMOC will weaken by 0.6 (3%), 1.2 (7%) and 1.8 (11%) Sv. AMOC weakening is mainly caused by freshwater transported from increasing Arctic river runoff inhibiting the formation of North Atlantic Deep Water (NADW). As the AMOC weakens, the deep seawater age will become older throughout the Atlantic Basin owing to the increasing of Arctic runoff.
基金The National Natural Science Foundation of China under contract Nos 41176069 and 48505350the Major State Basic Research Development Program of China under contract No.2013CB956502
文摘Time series measurements were conducted on suspended sediment and current velocity from neap tide to spring tide in the South Branch of the upper Changjiang Estuary in the summer of 2011. Strong flood-ebb asymmetry in the current velocity was observed in the South Branch as a result of high river runoff and tide deformation, in which the magnitude and duration of ebb currents were significantly greater than those of flood currents. The suspended sediment concentration(SSC) and suspended median grain size also exhibited remarkable flood-ebb variation; these variables were considerably larger during the ebb than during the flood and increased from neap to spring tide. Affected by the strong asymmetry in the current velocity and SSC between the flood and ebb,suspended sediment flux during the ebb was notably larger than during the flood, and a seaward tidal net flux was observed in each tidal cycle. The balance of sediment flux illustrates that the seaward sediment transport was dominated by river flow and tidal trapping and the landward sediment transport was dominated by the Stokes drift and the shear effect. Notable resuspension occurred during the spring and moderate tides. The critical velocity for the resuspension of bed sediments was estimated based on the correlation between current velocity with SSC and suspended median grain size. The results show that the critical velocity was approximately 40 cm/s during the flood phases and approximately 80 cm/s during the ebb phases because the surficial flood bed sediments located in the lower reach are much finer than the surficial ebb bed sediments located in the upper reach. The flood-ebb variation in the critical erosion velocity has significant effect on the intratidal variation of SSC and sediment transport process, and it is a common phenomenon in many estuaries of the world due to the complicated spatial distribution of bed sediments.
基金The Chinese Polar Environment Comprehensive Investigation and Assessment Programs under contract Nos CHINARE2014-03-04-03 and CHINARE2013-04-03-05the National Natural Science Foundation of China under contract No.41125020+1 种基金the 4th Chinese Arctic Research Programa special scientific research project for public welfare supported by the State Oceanic Administration under contract No.201105022-4
文摘As a conservative tracer, oxygen isotopes in seawater are widely used for water mass analysis, along with temperature and salinity. In this study, seawater oxygen-18 datasets in the Canada Basin during 1967-2010 were obtained from the four cruises of the Chinese National Arctic Research Expedition (1999, 2003, 2008, and 2010) and the NASA database. Fractions of sea ice meltwater and river runoffwere determined from the salinity-5180 system. Our results showed that the river runoff decreased from the south to the north in the Canada Basin. The enhanced amount of river runoff observed in the southern Canada Basin may originate from the Mackenzie River, transported by the Beaufort Gyre. The river runoff component showed maximum fractions during 1967-1969, 1978-1979, 1984-1985, 1993-1994, and 2008-2010, indicating the refresh time of the river runoffwas 5.0-16.0 a in the Canada Basin. The temporal variation of the river runoffwas related to the change of the Arctic Oscillation (AO) index, suggesting the freshwater stored in the Canada Basin was affected by surface sea ice drift and water mass movement driven by atmospheric circulation.
基金Special Fund for Social Public Good Project of the Ministry of Science and Technology,No.IDM200603National Basic Research Program of China (973 Program), No.2010CB951001 National Natural Science Foundation of China,No.41075050,No.40775019 No.40875010
文摘According to climate features and river runoff conditions, Xinjiang could be divided into three research areas: The Altay-Tacheng region, the Tianshan Mountain region and the northern slope of the Kunlun Mountains. Utilizing daily observations from 12 sounding stations and the annual runoff dataset from 34 hydrographical stations in Xinjiang for the period 1960-2002, the variance of the summertime 0℃ level height and the changing trends of river runoff are analyzed both qualitatively and quantitatively, through trend contrast of curves processed by a 5-point smoothing procedure and linear correlation. The variance of the summertime 0℃ level height in Xinjiang correlates well with that of the annual river runoff, especially since the early 1990s, but it differs from region to region, with both the average height of the 0℃ level and runoff quantity significantly increasing over time in the Al- tay-Tacheng and Tianshan Mountain regions but decreasing on the northern slope of the Kunlun Mountains. The correlation holds for the whole of Xinjiang as well as the three indi- vidual regions, with a 0.01 significance level. This indicates that in recent years, climate change in Xinjiang has affected not only the surface layer but also the upper levels of the atmosphere, and this raising and lowering of the summertime 0℃ level has a direct impact on the warming and wetting process in Xinjiang and the amount of river runoff. Warming due to climate change increases the height of the 0℃ level, but also speeds up, ice-snow melting in mountain regions, which in turn increases river runoff, leading to a season of plentiful water instead of the more normal low flow period.
基金supported by the Public Welfare Projects of Ministry of Water Resources (Grant No.200701026)the National Natural Science Foundation of China (Grant Nos. 49971064, 50339010)
文摘In the near-shore waters, the actual flow is mainly induced by tide, wind and salinity, and the river water runoff should also be included as a component in the estuary waters. The interactions among these major components are very complicated. Many approaches were proposed to study isolated tide and wind-driven currents or run-off based on the measured velocity, with all its components taken as a whole. In this article, firstly, based on the actual hydrodynamic characteristics of estuarine and coastal waters, an approach is proposed to separate the measured velocity by considering the theoretical current velocity profiles and using the least squares method. The vertical structures of tidal, wind-driven currents, density current and runoff can be obtained as well as their proportions in the measured velocity. Then, this approach is applied to the analysis of velocity data obtained in the North Branch of Yangtze River estuary and of laboratory test data. The results are found to be satisfactory. Finally, this approach is used to separate the measured velocity in the South Branch of Yangtze River estuary, to determine not only the bed friction velocity and roughness height, but also the surface wind stress, and to estimate the wind velocity data above the water surface. The results show that this method is simple in principle, practical in use, and reasonable in obtained results. So it can be used to effectively analyze the field data.