Steganography is a technique for hiding secret messages while sending and receiving communications through a cover item.From ancient times to the present,the security of secret or vital information has always been a s...Steganography is a technique for hiding secret messages while sending and receiving communications through a cover item.From ancient times to the present,the security of secret or vital information has always been a significant problem.The development of secure communication methods that keep recipient-only data transmissions secret has always been an area of interest.Therefore,several approaches,including steganography,have been developed by researchers over time to enable safe data transit.In this review,we have discussed image steganography based on Discrete Cosine Transform(DCT)algorithm,etc.We have also discussed image steganography based on multiple hashing algorithms like the Rivest–Shamir–Adleman(RSA)method,the Blowfish technique,and the hash-least significant bit(LSB)approach.In this review,a novel method of hiding information in images has been developed with minimal variance in image bits,making our method secure and effective.A cryptography mechanism was also used in this strategy.Before encoding the data and embedding it into a carry image,this review verifies that it has been encrypted.Usually,embedded text in photos conveys crucial signals about the content.This review employs hash table encryption on the message before hiding it within the picture to provide a more secure method of data transport.If the message is ever intercepted by a third party,there are several ways to stop this operation.A second level of security process implementation involves encrypting and decrypting steganography images using different hashing algorithms.展开更多
RSA public key crypto system is a relatively safe technology, which is widely used in today’s secure electronic communication. In this paper, a new implementation method to optimize a 1 024 bit RSA processor was pres...RSA public key crypto system is a relatively safe technology, which is widely used in today’s secure electronic communication. In this paper, a new implementation method to optimize a 1 024 bit RSA processor was presented. Basically, a fast modular multiplication architecture based on Montgomery’s algorithm was proposed. Modular exponentiation algorithm scans encryption from right to left, so two modular multiplications can be processed parallel. The new architecture is also fit for an effective I/O interface. The time to calculate a modular exponentiation is about n 2 clock cycles. The proposed architecture has a data rate of 93.7 kb/s for 1 024 bit work with a 100 MHz clock.展开更多
Based on some analyses of existing chaotic image encryption frameworks and a new designed three-dimensional improved logistic chaotic map(3D-ILM),an asymmetric image encryption algorithm using public-key Rivest–Shami...Based on some analyses of existing chaotic image encryption frameworks and a new designed three-dimensional improved logistic chaotic map(3D-ILM),an asymmetric image encryption algorithm using public-key Rivest–Shamir–Adleman(RSA)is presented in this paper.In the first stage,a new 3D-ILM is proposed to enhance the chaotic behavior considering analysis of time sequence,Lyapunov exponent,and Shannon entropy.In the second stage,combined with the public key RSA algorithm,a new key acquisition mathematical model(MKA)is constructed to obtain the initial keys for the 3D-ILM.Consequently,the key stream can be produced depending on the plain image for a higher security.Moreover,a novel process model(NPM)for the input of the 3D-ILM is built,which is built to improve the distribution uniformity of the chaotic sequence.In the third stage,to encrypt the plain image,a pre-process by exclusive OR(XOR)operation with a random matrix is applied.Then,the pre-processed image is performed by a permutation for rows,a downward modulo function for adjacent pixels,a permutation for columns,a forward direction XOR addition-modulo diffusion,and a backward direction XOR addition-modulo diffusion to achieve the final cipher image.Moreover,experiments show that the the proposed algorithm has a better performance.Especially,the number of pixels change rate(NPCR)is close to ideal case 99.6094%,with the unified average changing intensity(UACI)close to 33.4634%,and the information entropy(IE)close to 8.展开更多
E-voting (electronic voting) is a significant part of an E-election (electronic election), which refers to the use of computers or computerized voting equipment to cast ballots in an election. Due to the rapid growth ...E-voting (electronic voting) is a significant part of an E-election (electronic election), which refers to the use of computers or computerized voting equipment to cast ballots in an election. Due to the rapid growth of computer technologies and advances in cryptographic techniques, E-voting is now an applicable alternative for many non-governmental elections. However, security demands are paramount to electoral process in political arena. It was revealed that researchers show little interest in robustness of E-voting system compared to other E-voting requirements [1]. This paper shows that RSA (Ron Rivest, Adi Shamir and Leonard Adleman) cryptography algorithm can be incorporated into E-voting process as a whole. The RSA cryptography algorithm ensures that votes casted are secured, thus maintaining the privacy of votes. The performance of the cryptography algorithm is tested on a university E-voting system over a public network. The E-voting process is initiated by a server system that other computer nodes are connected to. The system is such that when the votes are cast on the nodes, the RSA technique encrypts the vote that is sent to the server system using both node and vote identity number. The system performs consistently and reliably which in return gives good level of confidence of votes count.展开更多
The IEC60870-5-104 protocol lacks an integrated authentication mechanism during plaintext transmission, and is vulnerable to security threats, monitoring, tampering, or cutting off communication connections. In order ...The IEC60870-5-104 protocol lacks an integrated authentication mechanism during plaintext transmission, and is vulnerable to security threats, monitoring, tampering, or cutting off communication connections. In order to verify the security problems of 104 protocol, the 104 master-slave communication implemented DoS attacks, ARP spoofing and Ettercap packet filtering and other man-in-the-middle attacks. DoS attacks may damage the network functions of the 104 communication host, resulting in communication interruption. ARP spoofing damaged the data privacy of the 104 protocol, and Ettercap packet filtering cut off the communication connection between the master and the slave. In order to resist the man-in-the-middle attack, the AES and RSA hybrid encryption signature algorithm and the national secret SM2 elliptic curve algorithm are proposed. AES and RSA hybrid encryption increases the security strength of communication data and realizes identity authentication. The digital signature implemented by the SM2 algorithm can realize identity verification, ensure that the data has not been tampered with, and can ensure the integrity of the data. Both of them improve the communication security of the 104 protocol.展开更多
文摘Steganography is a technique for hiding secret messages while sending and receiving communications through a cover item.From ancient times to the present,the security of secret or vital information has always been a significant problem.The development of secure communication methods that keep recipient-only data transmissions secret has always been an area of interest.Therefore,several approaches,including steganography,have been developed by researchers over time to enable safe data transit.In this review,we have discussed image steganography based on Discrete Cosine Transform(DCT)algorithm,etc.We have also discussed image steganography based on multiple hashing algorithms like the Rivest–Shamir–Adleman(RSA)method,the Blowfish technique,and the hash-least significant bit(LSB)approach.In this review,a novel method of hiding information in images has been developed with minimal variance in image bits,making our method secure and effective.A cryptography mechanism was also used in this strategy.Before encoding the data and embedding it into a carry image,this review verifies that it has been encrypted.Usually,embedded text in photos conveys crucial signals about the content.This review employs hash table encryption on the message before hiding it within the picture to provide a more secure method of data transport.If the message is ever intercepted by a third party,there are several ways to stop this operation.A second level of security process implementation involves encrypting and decrypting steganography images using different hashing algorithms.
基金NSF of U nited States under Contract 5 978East Asia and Pacific Program(960 2 485 )
文摘RSA public key crypto system is a relatively safe technology, which is widely used in today’s secure electronic communication. In this paper, a new implementation method to optimize a 1 024 bit RSA processor was presented. Basically, a fast modular multiplication architecture based on Montgomery’s algorithm was proposed. Modular exponentiation algorithm scans encryption from right to left, so two modular multiplications can be processed parallel. The new architecture is also fit for an effective I/O interface. The time to calculate a modular exponentiation is about n 2 clock cycles. The proposed architecture has a data rate of 93.7 kb/s for 1 024 bit work with a 100 MHz clock.
基金the National Natural Science Foundation of China(Grant No.61972103)the Natural Science Foundation of Guangdong Province of China(Grant No.2023A1515011207)+3 种基金the Special Project in Key Area of General University in Guangdong Province of China(Grant No.2020ZDZX3064)the Characteristic Innovation Project of General University in Guangdong Province of China(Grant No.2022KTSCX051)the Postgraduate Education Innovation Project of Guangdong Ocean University of China(Grant No.202263)the Foundation of Guangdong Provincial Engineering and Technology Research Center of Far Sea Fisheries Management and Fishing of South China Sea.
文摘Based on some analyses of existing chaotic image encryption frameworks and a new designed three-dimensional improved logistic chaotic map(3D-ILM),an asymmetric image encryption algorithm using public-key Rivest–Shamir–Adleman(RSA)is presented in this paper.In the first stage,a new 3D-ILM is proposed to enhance the chaotic behavior considering analysis of time sequence,Lyapunov exponent,and Shannon entropy.In the second stage,combined with the public key RSA algorithm,a new key acquisition mathematical model(MKA)is constructed to obtain the initial keys for the 3D-ILM.Consequently,the key stream can be produced depending on the plain image for a higher security.Moreover,a novel process model(NPM)for the input of the 3D-ILM is built,which is built to improve the distribution uniformity of the chaotic sequence.In the third stage,to encrypt the plain image,a pre-process by exclusive OR(XOR)operation with a random matrix is applied.Then,the pre-processed image is performed by a permutation for rows,a downward modulo function for adjacent pixels,a permutation for columns,a forward direction XOR addition-modulo diffusion,and a backward direction XOR addition-modulo diffusion to achieve the final cipher image.Moreover,experiments show that the the proposed algorithm has a better performance.Especially,the number of pixels change rate(NPCR)is close to ideal case 99.6094%,with the unified average changing intensity(UACI)close to 33.4634%,and the information entropy(IE)close to 8.
文摘E-voting (electronic voting) is a significant part of an E-election (electronic election), which refers to the use of computers or computerized voting equipment to cast ballots in an election. Due to the rapid growth of computer technologies and advances in cryptographic techniques, E-voting is now an applicable alternative for many non-governmental elections. However, security demands are paramount to electoral process in political arena. It was revealed that researchers show little interest in robustness of E-voting system compared to other E-voting requirements [1]. This paper shows that RSA (Ron Rivest, Adi Shamir and Leonard Adleman) cryptography algorithm can be incorporated into E-voting process as a whole. The RSA cryptography algorithm ensures that votes casted are secured, thus maintaining the privacy of votes. The performance of the cryptography algorithm is tested on a university E-voting system over a public network. The E-voting process is initiated by a server system that other computer nodes are connected to. The system is such that when the votes are cast on the nodes, the RSA technique encrypts the vote that is sent to the server system using both node and vote identity number. The system performs consistently and reliably which in return gives good level of confidence of votes count.
文摘The IEC60870-5-104 protocol lacks an integrated authentication mechanism during plaintext transmission, and is vulnerable to security threats, monitoring, tampering, or cutting off communication connections. In order to verify the security problems of 104 protocol, the 104 master-slave communication implemented DoS attacks, ARP spoofing and Ettercap packet filtering and other man-in-the-middle attacks. DoS attacks may damage the network functions of the 104 communication host, resulting in communication interruption. ARP spoofing damaged the data privacy of the 104 protocol, and Ettercap packet filtering cut off the communication connection between the master and the slave. In order to resist the man-in-the-middle attack, the AES and RSA hybrid encryption signature algorithm and the national secret SM2 elliptic curve algorithm are proposed. AES and RSA hybrid encryption increases the security strength of communication data and realizes identity authentication. The digital signature implemented by the SM2 algorithm can realize identity verification, ensure that the data has not been tampered with, and can ensure the integrity of the data. Both of them improve the communication security of the 104 protocol.