Road transportation plays a crucial role in society and daily life,as the functioning and durability of roads can significantly impact a nation's economic development.In the whole life cycle of the road,the emerge...Road transportation plays a crucial role in society and daily life,as the functioning and durability of roads can significantly impact a nation's economic development.In the whole life cycle of the road,the emergence of disease is unavoidable,so it is necessary to adopt relevant technical means to deal with the disease.This study comprehensively reviews the advancements in computer vision,artificial intelligence,and mobile robotics in the road domain and examines their progress and applications in road detection,diagnosis,and treatment,especially asphalt roads.Specifically,it analyzes the research progress in detecting and diagnosing surface and internal road distress and related techniques and algorithms are compared.In addition,also introduces various road gover-nance technologies,including automated repairs,intelligent construction,and path planning for crack sealing.Despite their proven effectiveness in detecting road distress,analyzing diagnoses,and planning maintenance,these technologies still confront challenges in data collection,parameter optimization,model portability,system accuracy,robustness,and real-time performance.Consequently,the integration of multidisciplinary technologies is imperative to enable the development of an integrated approach that includes road detection,diagnosis,and treatment.This paper addresses the challenges of precise defect detection,condition assessment,and unmanned construction.At the same time,the efficiency of labor liberation and road maintenance is achieved,and the automation level of the road engineering industry is improved.展开更多
Integrating Tiny Machine Learning(TinyML)with edge computing in remotely sensed images enhances the capabilities of road anomaly detection on a broader level.Constrained devices efficiently implement a Binary Neural N...Integrating Tiny Machine Learning(TinyML)with edge computing in remotely sensed images enhances the capabilities of road anomaly detection on a broader level.Constrained devices efficiently implement a Binary Neural Network(BNN)for road feature extraction,utilizing quantization and compression through a pruning strategy.The modifications resulted in a 28-fold decrease in memory usage and a 25%enhancement in inference speed while only experiencing a 2.5%decrease in accuracy.It showcases its superiority over conventional detection algorithms in different road image scenarios.Although constrained by computer resources and training datasets,our results indicate opportunities for future research,demonstrating that quantization and focused optimization can significantly improve machine learning models’accuracy and operational efficiency.ARM Cortex-M0 gives practical feasibility and substantial benefits while deploying our optimized BNN model on this low-power device:Advanced machine learning in edge computing.The analysis work delves into the educational significance of TinyML and its essential function in analyzing road networks using remote sensing,suggesting ways to improve smart city frameworks in road network assessment,traffic management,and autonomous vehicle navigation systems by emphasizing the importance of new technologies for maintaining and safeguarding road networks.展开更多
Surveillance cameras have been widely used for monitoring in both private and public sectors as a security measure.Close Circuits Television(CCTV)Cameras are used to surveillance and monitor the normal and anomalous i...Surveillance cameras have been widely used for monitoring in both private and public sectors as a security measure.Close Circuits Television(CCTV)Cameras are used to surveillance and monitor the normal and anomalous incidents.Real-world anomaly detection is a significant challenge due to its complex and diverse nature.It is difficult to manually analyze because vast amounts of video data have been generated through surveillance systems,and the need for automated techniques has been raised to enhance detection accuracy.This paper proposes a novel deep-stacked ensemble model integrated with a data augmentation approach called Stack Ensemble Road Anomaly Detection(SERAD).SERAD is used to detect and classify the four most happening road anomalies,such as accidents,car fires,fighting,and snatching,through road surveillance videos with high accuracy.The SERAD adapted three pre-trained Convolutional Neural Networks(CNNs)models,namely VGG19,ResNet50 and InceptionV3.The stacking technique is employed to incorporate these three models,resulting in much-improved accuracy for classifying road abnormalities compared to individual models.Additionally,it presented a custom real-world Road Anomaly Dataset(RAD)comprising a comprehensive collection of road images and videos.The experimental results demonstrate the strength and reliability of the proposed SERAD model,achieving an impressive classification accuracy of 98.7%.The results indicate that the proposed SERAD model outperforms than the individual CNN base models.展开更多
As a vital and integral component of transportation infrastructure,pavement has a direct and tangible impact on socio-economic sustainability.In recent years,an influx of groundbreaking and state-of-the-art materials,...As a vital and integral component of transportation infrastructure,pavement has a direct and tangible impact on socio-economic sustainability.In recent years,an influx of groundbreaking and state-of-the-art materials,structures,equipment,and detection technologies related to road engineering have continually and progressively emerged,reshaping the landscape of pavement systems.There is a pressing and growing need for a timely summarization of the current research status and a clear identification of future research directions in these advanced and evolving technologies.Therefore,Journal of Road Engineering has undertaken the significant initiative of introducing a comprehensive review paper with the overarching theme of“advanced road materials,structures,equipment,and detection technologies”.This extensive and insightful review meticulously gathers and synthesizes research findings from 39 distinguished scholars,all of whom are affiliated with 19 renowned universities or research institutions specializing in the diverse and multidimensional field of highway engineering.It covers the current state and anticipates future development directions in the four major and interconnected domains of road engineering:advanced road materials,advanced road structures and performance evaluation,advanced road construction equipment and technology,and advanced road detection and assessment technologies.展开更多
Vision-based road detection is an important research topic in different areas of computer vision such as the autonomous navigation of mobile robots.In outdoor unstructured environments such as villages and deserts,the...Vision-based road detection is an important research topic in different areas of computer vision such as the autonomous navigation of mobile robots.In outdoor unstructured environments such as villages and deserts,the roads are usually not well-paved and have variant colors or texture distributions.Traditional region- or edge-based approaches,however,are effective only in specific environments,and most of them have weak adaptability to varying road types and appearances.In this paper we describe a novel top-down based hybrid algorithm which properly combines both region and edge cues from the images.The main difference between our proposed algorithm and previous ones is that,before road detection,an off-line scene classifier is efficiently learned by both low- and high-level image cues to predict the unstructured road model.This scene classification can be considered a decision process which guides the selection of the optimal solution from region- or edge-based approaches to detect the road.Moreover,a temporal smoothing mechanism is incorporated,which further makes both model prediction and region classification more stable.Experimental results demonstrate that compared with traditional region- and edge-based algorithms,our algorithm is more robust in detecting the road areas with diverse road types and varying appearances in unstructured conditions.展开更多
Automatic road damage detection using image processing is an important aspect of road maintenance.It is also a challenging problem due to the inhomogeneity of road damage and complicated background in the road images....Automatic road damage detection using image processing is an important aspect of road maintenance.It is also a challenging problem due to the inhomogeneity of road damage and complicated background in the road images.In recent years,deep convolutional neural network based methods have been used to address the challenges of road damage detection and classification.In this paper,we propose a new approach to address those challenges.This approach uses densely connected convolution networks as the backbone of the Mask R-CNN to effectively extract image feature,a feature pyramid network for combining multiple scales features,a region proposal network to generate the road damage region,and a fully convolutional neural network to classify the road damage region and refine the region bounding box.This method can not only detect and classify the road damage,but also create a mask of the road damage.Experimental results show that the proposed approach can achieve better results compared with other existing methods.展开更多
Video processing is one challenge in collecting vehicle trajectories from unmanned aerial vehicle(UAV) and road boundary estimation is one way to improve the video processing algorithms. However, current methods do no...Video processing is one challenge in collecting vehicle trajectories from unmanned aerial vehicle(UAV) and road boundary estimation is one way to improve the video processing algorithms. However, current methods do not work well for low volume road, which is not well-marked and with noises such as vehicle tracks. A fusion-based method termed Dempster-Shafer-based road detection(DSRD) is proposed to address this issue. This method detects road boundary by combining multiple information sources using Dempster-Shafer theory(DST). In order to test the performance of the proposed method, two field experiments were conducted, one of which was on a highway partially covered by snow and another was on a dense traffic highway. The results show that DSRD is robust and accurate, whose detection rates are 100% and 99.8% compared with manual detection results. Then, DSRD is adopted to improve UAV video processing algorithm, and the vehicle detection and tracking rate are improved by 2.7% and 5.5%,respectively. Also, the computation time has decreased by 5% and 8.3% for two experiments, respectively.展开更多
This study aimed to propose road crack detection method based on infrared image fusion technology.By analyzing the characteristics of road crack images,this method uses a variety of infrared image fusion methods to pr...This study aimed to propose road crack detection method based on infrared image fusion technology.By analyzing the characteristics of road crack images,this method uses a variety of infrared image fusion methods to process different types of images.The use of this method allows the detection of road cracks,which not only reduces the professional requirements for inspectors,but also improves the accuracy of road crack detection.Based on infrared image processing technology,on the basis of in-depth analysis of infrared image features,a road crack detection method is proposed,which can accurately identify the road crack location,direction,length,and other characteristic information.Experiments showed that this method has a good effect,and can meet the requirement of road crack detection.展开更多
With the continuous development of remote sensing(RS)technology,the surface information can be collected conveniently and quickly by using the popular unmanned aerial vehicle(UAV).The application of UAV low altitude R...With the continuous development of remote sensing(RS)technology,the surface information can be collected conveniently and quickly by using the popular unmanned aerial vehicle(UAV).The application of UAV low altitude RS technology in road safety in intelligent area has certain practical significance.It can provide safety warning for most drivers,and provide auxiliary decision-making for the road supervision department.Through the collection,processing,calculation and analysis of the road image,the UAV can find out the road obstacles with potential safety hazards,identify the road pit,calculate the radius and depth of the road pit through the digital mapping system,predict the accident risk according to different speed and provide scientific basis for the road safety monitoring.At the same time,UAV can provide repair scheme for damaged roads,estimate the quantity of materials needed for repair,and achieve the target of resource saving and efficiency improvement.The experimental results show that the UAV can not only provide scientific prediction information for driving safety,but also provide relatively accurate material consumption for road repair.展开更多
The infrastructure and construction of roads are crucial for the economic and social development of a region,but traffic-related challenges like accidents and congestion persist.Artificial Intelligence(AI)and Machine ...The infrastructure and construction of roads are crucial for the economic and social development of a region,but traffic-related challenges like accidents and congestion persist.Artificial Intelligence(AI)and Machine Learning(ML)have been used in road infrastructure and construction,particularly with the Internet of Things(IoT)devices.Object detection in Computer Vision also plays a key role in improving road infrastructure and addressing trafficrelated problems.This study aims to use You Only Look Once version 7(YOLOv7),Convolutional Block Attention Module(CBAM),the most optimized object-detection algorithm,to detect and identify traffic signs,and analyze effective combinations of adaptive optimizers like Adaptive Moment estimation(Adam),Root Mean Squared Propagation(RMSprop)and Stochastic Gradient Descent(SGD)with the YOLOv7.Using a portion of German traffic signs for training,the study investigates the feasibility of adopting smaller datasets while maintaining high accuracy.The model proposed in this study not only improves traffic safety by detecting traffic signs but also has the potential to contribute to the rapid development of autonomous vehicle systems.The study results showed an impressive accuracy of 99.7%when using a batch size of 8 and the Adam optimizer.This high level of accuracy demonstrates the effectiveness of the proposed model for the image classification task of traffic sign recognition.展开更多
A method of detecting dry, icy and wet road surface conditions based on scanniag detection of single wavelength backward power is proposed in this letter. The detector is used to receive the backward scattered power w...A method of detecting dry, icy and wet road surface conditions based on scanniag detection of single wavelength backward power is proposed in this letter. The detector is used to receive the backward scattered power which changes with the incidence angle. The relationship between backward power and incidence angle is used to find out the effective angle range and distinguish method. Experiment and simulation show that it is feasible to classifv these three conditions within incidence angle of 5.3 degree.展开更多
Road marking detection is an important branch in autonomous driving,understanding the road information.In recent years,deep-learning-based semantic segmentation methods for road marking detection have been arising sin...Road marking detection is an important branch in autonomous driving,understanding the road information.In recent years,deep-learning-based semantic segmentation methods for road marking detection have been arising since they can generalize detection result well under complicated environments and hold rich pixel-level semantic information.Nevertheless,the previous methods mostly study the training process of the segmentation network,while omitting the time cost of manually annotating pixel-level data.Besides,the pixel-level semantic segmentation results need to be fitted into more reliable and compact models so that geometrical information of road markings can be explicitly obtained.In order to tackle the above problems,this paper describes a semantic segmentation-based road marking detection method using around view monitoring system.A semiautomatic semantic annotation platform is developed,which exploits an auxiliary segmentation graph to speed up the annotation process while guaranteeing the annotation accuracy.A segmentation-based detection module is also described,which models the semantic segmentation results for the more robust and compact analysis.The proposed detection module is composed of three parts:vote-based segmentation fusion filtering,graph-based road marking clustering,and road-marking fitting.Experiments under various scenarios show that the semantic segmentation-based detection method can achieve accurate,robust,and real-time detection performance.展开更多
With the rapid development of urban, the scale of the city is expanding day by day. The road environment is becoming more and more complicated. The vehicle ego-localization in complex road environment puts forward imp...With the rapid development of urban, the scale of the city is expanding day by day. The road environment is becoming more and more complicated. The vehicle ego-localization in complex road environment puts forward imperative requirements for intelligent driving technology. The reliable vehicle ego-localization, including the lane recognition and the vehicle position and attitude estimation, at the complex traffic intersection is significant for the intelligent driving of the vehicle. In this article, we focus on the complex road environment of the city, and propose a pose and position estimation method based on the road sign using only a monocular camera and a common GPS (global positioning system). Associated with the multi-sensor cascade system, this method can be a stable and reliable alternative when the precision of multi-sensor cascade system decreases. The experimental results show that, within 100 meters distance to the road signs, the pose error is less than 2 degrees, and the position error is less than one meter, which can reach the lane-level positioning accuracy. Through the comparison with the Beidou high-precision positioning system L202, our method is more accurate for detecting which lane the vehicle is driving on.展开更多
Deep learning has received a growing interest in recent years for detecting different types of pavement distresses and automating pavement condition assessment.A proper choice of deep learning models is key for succes...Deep learning has received a growing interest in recent years for detecting different types of pavement distresses and automating pavement condition assessment.A proper choice of deep learning models is key for successful pavement assessment applications.In this study,we first present a comprehensive experimental comparison of state-of-the-art image classification models to evaluate their performances on 11 pavement objects classification.Our experiments are conducted in different dimensions of comparison,including deep classifier architecture,effects of network depth,and computational costs.Five convolutional neural network(CNN)classifiers widely used in transportation applications,including VGG16,VGG19,ResNet50,DenseNet121,and a generic CNN(as the control model),are tested with a comprehensive pixel-level annotated dataset for 11 different distress and non-distress classes(UCF-PAVE 2017).In addition,we investigate a simple yet effective approach of encoding contextual information with multi-scale input tiles to classify highly random pavement objects in size,shape,intensity,texture,and direction.Our comparison results show that the multi-scale approach significantly improves the classification accuracy for all compared deep classifiers at a negligible extra computational cost.Finally,we provide recommendations of how to improve the classification performance of deep CNNs for automated pavement condition assessment based on the comparison results.展开更多
基金supported by the National Key Research and Development Program of China (No.2021YFB2601000)National Natural Science Foundation of China (Nos.52078049,52378431)+2 种基金Fundamental Research Funds for the Central Universities,CHD (Nos.300102210302,300102210118)the 111 Proj-ect of Sustainable Transportation for Urban Agglomeration in Western China (No.B20035)Natural Science Foundation of Shaanxi Province of China (No.S2022-JM-193).
文摘Road transportation plays a crucial role in society and daily life,as the functioning and durability of roads can significantly impact a nation's economic development.In the whole life cycle of the road,the emergence of disease is unavoidable,so it is necessary to adopt relevant technical means to deal with the disease.This study comprehensively reviews the advancements in computer vision,artificial intelligence,and mobile robotics in the road domain and examines their progress and applications in road detection,diagnosis,and treatment,especially asphalt roads.Specifically,it analyzes the research progress in detecting and diagnosing surface and internal road distress and related techniques and algorithms are compared.In addition,also introduces various road gover-nance technologies,including automated repairs,intelligent construction,and path planning for crack sealing.Despite their proven effectiveness in detecting road distress,analyzing diagnoses,and planning maintenance,these technologies still confront challenges in data collection,parameter optimization,model portability,system accuracy,robustness,and real-time performance.Consequently,the integration of multidisciplinary technologies is imperative to enable the development of an integrated approach that includes road detection,diagnosis,and treatment.This paper addresses the challenges of precise defect detection,condition assessment,and unmanned construction.At the same time,the efficiency of labor liberation and road maintenance is achieved,and the automation level of the road engineering industry is improved.
基金supported by the National Natural Science Foundation of China(61170147)Scientific Research Project of Zhejiang Provincial Department of Education in China(Y202146796)+2 种基金Natural Science Foundation of Zhejiang Province in China(LTY22F020003)Wenzhou Major Scientific and Technological Innovation Project of China(ZG2021029)Scientific and Technological Projects of Henan Province in China(202102210172).
文摘Integrating Tiny Machine Learning(TinyML)with edge computing in remotely sensed images enhances the capabilities of road anomaly detection on a broader level.Constrained devices efficiently implement a Binary Neural Network(BNN)for road feature extraction,utilizing quantization and compression through a pruning strategy.The modifications resulted in a 28-fold decrease in memory usage and a 25%enhancement in inference speed while only experiencing a 2.5%decrease in accuracy.It showcases its superiority over conventional detection algorithms in different road image scenarios.Although constrained by computer resources and training datasets,our results indicate opportunities for future research,demonstrating that quantization and focused optimization can significantly improve machine learning models’accuracy and operational efficiency.ARM Cortex-M0 gives practical feasibility and substantial benefits while deploying our optimized BNN model on this low-power device:Advanced machine learning in edge computing.The analysis work delves into the educational significance of TinyML and its essential function in analyzing road networks using remote sensing,suggesting ways to improve smart city frameworks in road network assessment,traffic management,and autonomous vehicle navigation systems by emphasizing the importance of new technologies for maintaining and safeguarding road networks.
基金funded by the King Saud University,Riyadh,Saudi Arabia for funding this work through Researchers Supporting Project Number-RSPD2024R893.
文摘Surveillance cameras have been widely used for monitoring in both private and public sectors as a security measure.Close Circuits Television(CCTV)Cameras are used to surveillance and monitor the normal and anomalous incidents.Real-world anomaly detection is a significant challenge due to its complex and diverse nature.It is difficult to manually analyze because vast amounts of video data have been generated through surveillance systems,and the need for automated techniques has been raised to enhance detection accuracy.This paper proposes a novel deep-stacked ensemble model integrated with a data augmentation approach called Stack Ensemble Road Anomaly Detection(SERAD).SERAD is used to detect and classify the four most happening road anomalies,such as accidents,car fires,fighting,and snatching,through road surveillance videos with high accuracy.The SERAD adapted three pre-trained Convolutional Neural Networks(CNNs)models,namely VGG19,ResNet50 and InceptionV3.The stacking technique is employed to incorporate these three models,resulting in much-improved accuracy for classifying road abnormalities compared to individual models.Additionally,it presented a custom real-world Road Anomaly Dataset(RAD)comprising a comprehensive collection of road images and videos.The experimental results demonstrate the strength and reliability of the proposed SERAD model,achieving an impressive classification accuracy of 98.7%.The results indicate that the proposed SERAD model outperforms than the individual CNN base models.
基金support from the European Union's Horizon 2020 Research and Innovation Program under the Marie Skłodowska-Curie grant agreement No.101024139,the RILEM technical committee TC 279 WMR(valorisation of waste and secondary materials for roads),RILEM technical committee TC-264 RAP(asphalt pavement recycling)the Swiss National Science Foundation(SNF)grant 205121_178991/1 for the project titled“Urban Mining for Low Noise Urban Roads and Optimized Design of Street Canyons”,National Natural Science Foundation of China(No.51808462,51978547,52005048,52108394,52178414,52208420,52278448,52308447,52378429)+9 种基金China Postdoctoral Science Foundation(No.2023M730356)National Key R&D Program of China(No.2021YFB2601302)Natural Science Basic Research Program of Shaanxi(Program No.2023-JC-QN-0472)Postdoctoral Science Foundation of Anhui Province(2022B627)Shaanxi Provincial Science and Technology Department(No.2022 PT30)Key Technological Special Project of Xinxiang City(No.22ZD013)Key Laboratory of Intelligent Manufacturing of Construction Machinery(No.IMCM2021KF02)the Applied Basic Research Project of Sichuan Science and Technology Department(Free Exploration Type)(Grant No.2020YJ0039)Key R&D Support Plan of Chengdu Science and Technology Project-Technology Innovation R&D Project(Grant No.2019-YF05-00002-SN)the China Postdoctoral Science Foundation(Grant No.2018M643520).
文摘As a vital and integral component of transportation infrastructure,pavement has a direct and tangible impact on socio-economic sustainability.In recent years,an influx of groundbreaking and state-of-the-art materials,structures,equipment,and detection technologies related to road engineering have continually and progressively emerged,reshaping the landscape of pavement systems.There is a pressing and growing need for a timely summarization of the current research status and a clear identification of future research directions in these advanced and evolving technologies.Therefore,Journal of Road Engineering has undertaken the significant initiative of introducing a comprehensive review paper with the overarching theme of“advanced road materials,structures,equipment,and detection technologies”.This extensive and insightful review meticulously gathers and synthesizes research findings from 39 distinguished scholars,all of whom are affiliated with 19 renowned universities or research institutions specializing in the diverse and multidimensional field of highway engineering.It covers the current state and anticipates future development directions in the four major and interconnected domains of road engineering:advanced road materials,advanced road structures and performance evaluation,advanced road construction equipment and technology,and advanced road detection and assessment technologies.
文摘Vision-based road detection is an important research topic in different areas of computer vision such as the autonomous navigation of mobile robots.In outdoor unstructured environments such as villages and deserts,the roads are usually not well-paved and have variant colors or texture distributions.Traditional region- or edge-based approaches,however,are effective only in specific environments,and most of them have weak adaptability to varying road types and appearances.In this paper we describe a novel top-down based hybrid algorithm which properly combines both region and edge cues from the images.The main difference between our proposed algorithm and previous ones is that,before road detection,an off-line scene classifier is efficiently learned by both low- and high-level image cues to predict the unstructured road model.This scene classification can be considered a decision process which guides the selection of the optimal solution from region- or edge-based approaches to detect the road.Moreover,a temporal smoothing mechanism is incorporated,which further makes both model prediction and region classification more stable.Experimental results demonstrate that compared with traditional region- and edge-based algorithms,our algorithm is more robust in detecting the road areas with diverse road types and varying appearances in unstructured conditions.
基金supported by the School Doctoral Fund of Zhengzhou University of Light Industry No.2015BSJJ051.
文摘Automatic road damage detection using image processing is an important aspect of road maintenance.It is also a challenging problem due to the inhomogeneity of road damage and complicated background in the road images.In recent years,deep convolutional neural network based methods have been used to address the challenges of road damage detection and classification.In this paper,we propose a new approach to address those challenges.This approach uses densely connected convolution networks as the backbone of the Mask R-CNN to effectively extract image feature,a feature pyramid network for combining multiple scales features,a region proposal network to generate the road damage region,and a fully convolutional neural network to classify the road damage region and refine the region bounding box.This method can not only detect and classify the road damage,but also create a mask of the road damage.Experimental results show that the proposed approach can achieve better results compared with other existing methods.
基金Project(2009AA11Z220)supported by the National High Technology Research and Development Program of China
文摘Video processing is one challenge in collecting vehicle trajectories from unmanned aerial vehicle(UAV) and road boundary estimation is one way to improve the video processing algorithms. However, current methods do not work well for low volume road, which is not well-marked and with noises such as vehicle tracks. A fusion-based method termed Dempster-Shafer-based road detection(DSRD) is proposed to address this issue. This method detects road boundary by combining multiple information sources using Dempster-Shafer theory(DST). In order to test the performance of the proposed method, two field experiments were conducted, one of which was on a highway partially covered by snow and another was on a dense traffic highway. The results show that DSRD is robust and accurate, whose detection rates are 100% and 99.8% compared with manual detection results. Then, DSRD is adopted to improve UAV video processing algorithm, and the vehicle detection and tracking rate are improved by 2.7% and 5.5%,respectively. Also, the computation time has decreased by 5% and 8.3% for two experiments, respectively.
文摘This study aimed to propose road crack detection method based on infrared image fusion technology.By analyzing the characteristics of road crack images,this method uses a variety of infrared image fusion methods to process different types of images.The use of this method allows the detection of road cracks,which not only reduces the professional requirements for inspectors,but also improves the accuracy of road crack detection.Based on infrared image processing technology,on the basis of in-depth analysis of infrared image features,a road crack detection method is proposed,which can accurately identify the road crack location,direction,length,and other characteristic information.Experiments showed that this method has a good effect,and can meet the requirement of road crack detection.
基金National Natural Science Foundation(51708098)Key Laboratory Project of National Bureau of Surveying and Mapping Geographic Information for Watershed Ecology and Geographic Environment Monitoring(WE2016018)。
文摘With the continuous development of remote sensing(RS)technology,the surface information can be collected conveniently and quickly by using the popular unmanned aerial vehicle(UAV).The application of UAV low altitude RS technology in road safety in intelligent area has certain practical significance.It can provide safety warning for most drivers,and provide auxiliary decision-making for the road supervision department.Through the collection,processing,calculation and analysis of the road image,the UAV can find out the road obstacles with potential safety hazards,identify the road pit,calculate the radius and depth of the road pit through the digital mapping system,predict the accident risk according to different speed and provide scientific basis for the road safety monitoring.At the same time,UAV can provide repair scheme for damaged roads,estimate the quantity of materials needed for repair,and achieve the target of resource saving and efficiency improvement.The experimental results show that the UAV can not only provide scientific prediction information for driving safety,but also provide relatively accurate material consumption for road repair.
文摘The infrastructure and construction of roads are crucial for the economic and social development of a region,but traffic-related challenges like accidents and congestion persist.Artificial Intelligence(AI)and Machine Learning(ML)have been used in road infrastructure and construction,particularly with the Internet of Things(IoT)devices.Object detection in Computer Vision also plays a key role in improving road infrastructure and addressing trafficrelated problems.This study aims to use You Only Look Once version 7(YOLOv7),Convolutional Block Attention Module(CBAM),the most optimized object-detection algorithm,to detect and identify traffic signs,and analyze effective combinations of adaptive optimizers like Adaptive Moment estimation(Adam),Root Mean Squared Propagation(RMSprop)and Stochastic Gradient Descent(SGD)with the YOLOv7.Using a portion of German traffic signs for training,the study investigates the feasibility of adopting smaller datasets while maintaining high accuracy.The model proposed in this study not only improves traffic safety by detecting traffic signs but also has the potential to contribute to the rapid development of autonomous vehicle systems.The study results showed an impressive accuracy of 99.7%when using a batch size of 8 and the Adam optimizer.This high level of accuracy demonstrates the effectiveness of the proposed model for the image classification task of traffic sign recognition.
文摘A method of detecting dry, icy and wet road surface conditions based on scanniag detection of single wavelength backward power is proposed in this letter. The detector is used to receive the backward scattered power which changes with the incidence angle. The relationship between backward power and incidence angle is used to find out the effective angle range and distinguish method. Experiment and simulation show that it is feasible to classifv these three conditions within incidence angle of 5.3 degree.
基金the National Natural Science Foundation of China(Nos.U1764264 and 61873165)the Shanghai Automotive Industry Science and Technology Development Foundation(No.1807)。
文摘Road marking detection is an important branch in autonomous driving,understanding the road information.In recent years,deep-learning-based semantic segmentation methods for road marking detection have been arising since they can generalize detection result well under complicated environments and hold rich pixel-level semantic information.Nevertheless,the previous methods mostly study the training process of the segmentation network,while omitting the time cost of manually annotating pixel-level data.Besides,the pixel-level semantic segmentation results need to be fitted into more reliable and compact models so that geometrical information of road markings can be explicitly obtained.In order to tackle the above problems,this paper describes a semantic segmentation-based road marking detection method using around view monitoring system.A semiautomatic semantic annotation platform is developed,which exploits an auxiliary segmentation graph to speed up the annotation process while guaranteeing the annotation accuracy.A segmentation-based detection module is also described,which models the semantic segmentation results for the more robust and compact analysis.The proposed detection module is composed of three parts:vote-based segmentation fusion filtering,graph-based road marking clustering,and road-marking fitting.Experiments under various scenarios show that the semantic segmentation-based detection method can achieve accurate,robust,and real-time detection performance.
基金This work was supported by the Key Project of National Natural Science Foundation of China under Grant No. 61332015 and the Natural Science Foundation of Shandong Province of China under Grant Nos. ZR2013FM302 and ZR2017MF057.
文摘With the rapid development of urban, the scale of the city is expanding day by day. The road environment is becoming more and more complicated. The vehicle ego-localization in complex road environment puts forward imperative requirements for intelligent driving technology. The reliable vehicle ego-localization, including the lane recognition and the vehicle position and attitude estimation, at the complex traffic intersection is significant for the intelligent driving of the vehicle. In this article, we focus on the complex road environment of the city, and propose a pose and position estimation method based on the road sign using only a monocular camera and a common GPS (global positioning system). Associated with the multi-sensor cascade system, this method can be a stable and reliable alternative when the precision of multi-sensor cascade system decreases. The experimental results show that, within 100 meters distance to the road signs, the pose error is less than 2 degrees, and the position error is less than one meter, which can reach the lane-level positioning accuracy. Through the comparison with the Beidou high-precision positioning system L202, our method is more accurate for detecting which lane the vehicle is driving on.
基金supported by Data Transfer Solutions,a company located in Orlando,Florida,U.S.A.Korea Institute of Civil Engineering and Building Technology(KICT)。
文摘Deep learning has received a growing interest in recent years for detecting different types of pavement distresses and automating pavement condition assessment.A proper choice of deep learning models is key for successful pavement assessment applications.In this study,we first present a comprehensive experimental comparison of state-of-the-art image classification models to evaluate their performances on 11 pavement objects classification.Our experiments are conducted in different dimensions of comparison,including deep classifier architecture,effects of network depth,and computational costs.Five convolutional neural network(CNN)classifiers widely used in transportation applications,including VGG16,VGG19,ResNet50,DenseNet121,and a generic CNN(as the control model),are tested with a comprehensive pixel-level annotated dataset for 11 different distress and non-distress classes(UCF-PAVE 2017).In addition,we investigate a simple yet effective approach of encoding contextual information with multi-scale input tiles to classify highly random pavement objects in size,shape,intensity,texture,and direction.Our comparison results show that the multi-scale approach significantly improves the classification accuracy for all compared deep classifiers at a negligible extra computational cost.Finally,we provide recommendations of how to improve the classification performance of deep CNNs for automated pavement condition assessment based on the comparison results.