The suitable cement concrete pavement for mountainous areas is a form of low-cost cement concrete pavement that uses unconventional graded stones in different proportions in ordinary concrete,allowing the concrete to ...The suitable cement concrete pavement for mountainous areas is a form of low-cost cement concrete pavement that uses unconventional graded stones in different proportions in ordinary concrete,allowing the concrete to fully contact the stones and form a stable and well-bonded slab with large particle stones.As large particle stones replace a certain volume of cement concrete,they have good economic performance and are a low-cost form of cement concrete pavement.This study researches the use of ANSYS tools to analyze the influence of geometric dimensions and material properties of rigid pavement structural layers on the mechanical properties of pavement structures.展开更多
Emergency road networks(ERNs),an important part of local disaster prevention systems,can provide security to residents and their property.Exploring the ERNs structure is of great significance in terms of promoting dis...Emergency road networks(ERNs),an important part of local disaster prevention systems,can provide security to residents and their property.Exploring the ERNs structure is of great significance in terms of promoting disaster prevention and establishing road safety in dangerous mountainous areas.This study considered the ERNs of the Kangding section of the Dadu River Basin as the area for a case study.Complex Network Analysis was used to examine the relationship between the four characteristic indicators of mountain roads and the degree of earthquake impacts under the Lushan,Wenchuan,and Kangding Earthquake scenarios.Based on the analysis results,the southwest mountain road network was evaluated;then,computer simulations were used to evaluate the structural changes in the road network after index changes.The network was optimized,and the corresponding emergency avoidance network was proposed to provide a reference for the establishment of the mountainous ERN.The results show that the overall completeness of the mountainous ERNs in Southwest China is poor and prone to traffic accidents.Moreover,the local stability is poor,and the network is susceptible to natural hazards.The overall structure of the road network is balanced,but that of certain road sections is not.Road sections with different attributes present a“gathering-scattering”spatial distribution,i.e,some sections are clustered together while others are far apart.Accordingly,a planning optimization strategy is proposed to better understand the complexity and systematic nature of the mountainous ERN as a whole and to provide a reference for disaster prevention and mitigation planning in mountainous regions in Southwest China.展开更多
A landslide always results from a progressive process of slope deformation. In recent years, an increasing number of slope instabilities have occurred with regard to human engineering activities such as hydropower or ...A landslide always results from a progressive process of slope deformation. In recent years, an increasing number of slope instabilities have occurred with regard to human engineering activities such as hydropower or traffic construction in mountainous area, which cause even greater casualties and economic loss compared with the natural hazards. The development of such earth surface process may hold long period with mechanisms still not fully understood. Using monitoring technology is an effective and intuitive approach to assist analyzing the slope deformation process and their driving factors. This study presents an engineering slope excavated during the construction of Changheba Hydropower Station, which is located in the upper reaches of Dadu River, Sichuan Province, southwest China. The engineering slope experienced and featured a five-year continuous deformation which caused continuous high risks to the engineering activities. We conducted in-depth analysis for such a long-term deformation process based on ground and subsurface monitoring data, collected successive data with a series of monitoring equipment such as automated total station, borehole inclinometers and other auxiliary apparatus, and identified the deformation process based on the comprehensive analysis of monitoring data as well as field investigation. After analyzing the effects of engineering activities and natural factors on the continuous deformation, we found that the overburden strata provided deformable mass while the excavation-produced steep terrain initiated the slope deformation in limit equilibrium state over a long period of time;afterwards, the intense rainwater accelerated slope deformation in the rainy season.展开更多
Glaciers are crucial water resources for arid inland rivers in Northwest China.In recent decades,glaciers are largely experiencing shrinkage under the climate-warming scenario,thereby exerting tremendous influences on...Glaciers are crucial water resources for arid inland rivers in Northwest China.In recent decades,glaciers are largely experiencing shrinkage under the climate-warming scenario,thereby exerting tremendous influences on regional water resources.The primary role of understudying watershed scale glacier changes under changing climatic conditions is to ensure sustainable utilization of regional water resources,to prevent and mitigate glacier-related disasters.This study maps the current(2020)distribution of glacier boundaries across the Kaidu-Kongque river basin,south slope of Tianshan Mountains,and monitors the spatial evolution of glaciers over five time periods from 2000-2020 through thresholded band ratios approach,using 25 Landsat images at 30 m resolution.In addition,this study attempts to understand the role of climate characteristics for variable response of glacier area.The results show that the total area of glaciers was 398.21 km^(2)in 2020.The glaciers retreated by about 1.17 km^(2)/a(0.26%/a)from 2000 to 2020.The glaciers were reducing at a significantly rapid rate between 2000 and 2005,a slow rate from 2005 to 2015,and an accelerated rate during 2015-2020.The meteorological data shows slight increasing trends of mean annual temperature(0.02℃/a)and annual precipitation(2.07 mm/a).The correlation analysis demonstrates that the role of temperature presents more significant correlation with glacier recession than precipitation.There is a temporal hysteresis in the response of glacier change to climate change.Increasing trend of temperature in summer proves to be the driving force behind the Kaidu-Kongque basin glacier recession during the recent 20 years.展开更多
The Qilian Mountain permafrost area located in the northern of Qinghai-Tibet Plateau is a favorable place for natural gas hydrate formation and enrichment,due to its well-developed fractures and abundant gas sources.U...The Qilian Mountain permafrost area located in the northern of Qinghai-Tibet Plateau is a favorable place for natural gas hydrate formation and enrichment,due to its well-developed fractures and abundant gas sources.Understanding the formation and distribution of multi-component gas hydrates in fractures is crucial in accurately evaluating the hydrate reservoir resources in this area.The hydrate formation experiments were carried out using the core samples drilled from hydrate-bearing sediments in Qilian Mountain permafrost area and the multi-component gas with similar composition to natural gas hydrates in Qilian Mountain permafrost area.The formation and distribution characteristics of multi-component gas hydrates in core samples were observed in situ by X-ray Computed Tomography(X-CT)under high pressure and low temperature conditions.Results show that hydrates are mainly formed and distributed in the fractures with good connectivity.The ratios of volume of hydrates formed in fractures to the volume of fractures are about 96.8%and 60.67%in two different core samples.This indicates that the fracture surface may act as a favorable reaction site for hydrate formation in core samples.Based on the field geological data and the experimental results,it is preliminarily estimated that the inventory of methane stored in the fractured gas hydrate in Qilian Mountain permafrost area is about 8.67×1013 m3,with a resource abundance of 8.67×108 m3/km2.This study demonstrates the great resource potential of fractured gas hydrate and also provides a new way to further understand the prospect of natural gas hydrate and other oil and gas resources in Qilian Mountain permafrost area.展开更多
Taking the planning of elderly building for example, this paper explored the spatial layout, entrance/exit design, road space design and landscape design of the elderly residential districts against the background of ...Taking the planning of elderly building for example, this paper explored the spatial layout, entrance/exit design, road space design and landscape design of the elderly residential districts against the background of population aging and increasing demands of ecological residence. In addition, the paper tried to fully use outstanding natural environment in mountainous areas to plan the elderly community, and integrate the characteristics of mountainous community planning and elderly buildings.展开更多
Landslide is a serious natural disaster next only to earthquake and flood,which will cause a great threat to people’s lives and property safety.The traditional research of landslide disaster based on experience-drive...Landslide is a serious natural disaster next only to earthquake and flood,which will cause a great threat to people’s lives and property safety.The traditional research of landslide disaster based on experience-driven or statistical model and its assessment results are subjective,difficult to quantify,and no pertinence.As a new research method for landslide susceptibility assessment,machine learning can greatly improve the landslide susceptibility model’s accuracy by constructing statistical models.Taking Western Henan for example,the study selected 16 landslide influencing factors such as topography,geological environment,hydrological conditions,and human activities,and 11 landslide factors with the most significant influence on the landslide were selected by the recursive feature elimination(RFE)method.Five machine learning methods[Support Vector Machines(SVM),Logistic Regression(LR),Random Forest(RF),Extreme Gradient Boosting(XGBoost),and Linear Discriminant Analysis(LDA)]were used to construct the spatial distribution model of landslide susceptibility.The models were evaluated by the receiver operating characteristic curve and statistical index.After analysis and comparison,the XGBoost model(AUC 0.8759)performed the best and was suitable for dealing with regression problems.The model had a high adaptability to landslide data.According to the landslide susceptibility map of the five models,the overall distribution can be observed.The extremely high and high susceptibility areas are distributed in the Funiu Mountain range in the southwest,the Xiaoshan Mountain range in the west,and the Yellow River Basin in the north.These areas have large terrain fluctuations,complicated geological structural environments and frequent human engineering activities.The extremely high and highly prone areas were 12043.3 km^(2)and 3087.45 km^(2),accounting for 47.61%and 12.20%of the total area of the study area,respectively.Our study reflects the distribution of landslide susceptibility in western Henan Province,which provides a scientific basis for regional disaster warning,prediction,and resource protection.The study has important practical significance for subsequent landslide disaster management.展开更多
Cropland abandonment is common and widely distributed in hilly and mountainous areas.Clarifying the current situation and development of cropland abandonment can provide reference for the rational and classified manag...Cropland abandonment is common and widely distributed in hilly and mountainous areas.Clarifying the current situation and development of cropland abandonment can provide reference for the rational and classified management of cropland abandonment in hilly and mountainous areas.Taking Jiangxi Province as the study area,and using the Google Earth Engine and Landsat data,the scale and years of abandoned cropland from 2002 to 2020 were calculated by using the random forest classifier and rules for identifying cropland abandonment.The spatio-temporal pattern of cropland abandonment at the county level was analyzed.The results indicated that the overall accuracy of land use classification was over 90%.The cropland abandonment rate ranged from 3%to 5.5%from 2002 to 2020,while the cropland abandonment rate was highest in 2013 and showed a downward trend after 2017.Among the years,the area of first-time abandoned cropland was the largest in 2005.The distribution of the cropland abandonment rate was low in the middle and north,but high in the surrounding area and the south.A notable positive spatial correlation was observed in the cropland abandonment rate,with a gradual intensification of spatial clustering.The LISA cluster map revealed a significant north-south disparity,exhibiting an incremental trend over time in the characteristics of the“High-High”cluster in the Southeastern Mountainous Area and the“Low-Low”cluster in the Poyang Lake Hilly Plain in Jiangxi.The results of this study can provide data for extracting spatial information and analyzing the driving factors of cropland abandonment in hilly and mountainous areas,and they can also provide a basis for the development of policies for the utilization and classification management of abandoned cropland.展开更多
文摘The suitable cement concrete pavement for mountainous areas is a form of low-cost cement concrete pavement that uses unconventional graded stones in different proportions in ordinary concrete,allowing the concrete to fully contact the stones and form a stable and well-bonded slab with large particle stones.As large particle stones replace a certain volume of cement concrete,they have good economic performance and are a low-cost form of cement concrete pavement.This study researches the use of ANSYS tools to analyze the influence of geometric dimensions and material properties of rigid pavement structural layers on the mechanical properties of pavement structures.
基金jointly supported by the National Key R&D Program of China(2018YFD1100804)。
文摘Emergency road networks(ERNs),an important part of local disaster prevention systems,can provide security to residents and their property.Exploring the ERNs structure is of great significance in terms of promoting disaster prevention and establishing road safety in dangerous mountainous areas.This study considered the ERNs of the Kangding section of the Dadu River Basin as the area for a case study.Complex Network Analysis was used to examine the relationship between the four characteristic indicators of mountain roads and the degree of earthquake impacts under the Lushan,Wenchuan,and Kangding Earthquake scenarios.Based on the analysis results,the southwest mountain road network was evaluated;then,computer simulations were used to evaluate the structural changes in the road network after index changes.The network was optimized,and the corresponding emergency avoidance network was proposed to provide a reference for the establishment of the mountainous ERN.The results show that the overall completeness of the mountainous ERNs in Southwest China is poor and prone to traffic accidents.Moreover,the local stability is poor,and the network is susceptible to natural hazards.The overall structure of the road network is balanced,but that of certain road sections is not.Road sections with different attributes present a“gathering-scattering”spatial distribution,i.e,some sections are clustered together while others are far apart.Accordingly,a planning optimization strategy is proposed to better understand the complexity and systematic nature of the mountainous ERN as a whole and to provide a reference for disaster prevention and mitigation planning in mountainous regions in Southwest China.
基金funded by the Second Tibetan Plateau Scientific Expedition and Research Program(STEP)(2019QZKK0904)National Natural Science Foundation of China(42077266,41825018,42090051,41941018,41902289)Strategic Priority Research Program of the Chinese Academy of Sciences(XDA23090402)。
文摘A landslide always results from a progressive process of slope deformation. In recent years, an increasing number of slope instabilities have occurred with regard to human engineering activities such as hydropower or traffic construction in mountainous area, which cause even greater casualties and economic loss compared with the natural hazards. The development of such earth surface process may hold long period with mechanisms still not fully understood. Using monitoring technology is an effective and intuitive approach to assist analyzing the slope deformation process and their driving factors. This study presents an engineering slope excavated during the construction of Changheba Hydropower Station, which is located in the upper reaches of Dadu River, Sichuan Province, southwest China. The engineering slope experienced and featured a five-year continuous deformation which caused continuous high risks to the engineering activities. We conducted in-depth analysis for such a long-term deformation process based on ground and subsurface monitoring data, collected successive data with a series of monitoring equipment such as automated total station, borehole inclinometers and other auxiliary apparatus, and identified the deformation process based on the comprehensive analysis of monitoring data as well as field investigation. After analyzing the effects of engineering activities and natural factors on the continuous deformation, we found that the overburden strata provided deformable mass while the excavation-produced steep terrain initiated the slope deformation in limit equilibrium state over a long period of time;afterwards, the intense rainwater accelerated slope deformation in the rainy season.
基金This work was supported by the project of China Geology Survey(DD20190315)Innovation Capability Support Program of Shaanxi(2019TD-040)+1 种基金“Integration of Groundwater Resources Assessment Results in Key Areas of Northwest China”programKey Laboratory of Groundwater and Ecology in Arid and Semi-arid Areas of China Geological Survey.
文摘Glaciers are crucial water resources for arid inland rivers in Northwest China.In recent decades,glaciers are largely experiencing shrinkage under the climate-warming scenario,thereby exerting tremendous influences on regional water resources.The primary role of understudying watershed scale glacier changes under changing climatic conditions is to ensure sustainable utilization of regional water resources,to prevent and mitigate glacier-related disasters.This study maps the current(2020)distribution of glacier boundaries across the Kaidu-Kongque river basin,south slope of Tianshan Mountains,and monitors the spatial evolution of glaciers over five time periods from 2000-2020 through thresholded band ratios approach,using 25 Landsat images at 30 m resolution.In addition,this study attempts to understand the role of climate characteristics for variable response of glacier area.The results show that the total area of glaciers was 398.21 km^(2)in 2020.The glaciers retreated by about 1.17 km^(2)/a(0.26%/a)from 2000 to 2020.The glaciers were reducing at a significantly rapid rate between 2000 and 2005,a slow rate from 2005 to 2015,and an accelerated rate during 2015-2020.The meteorological data shows slight increasing trends of mean annual temperature(0.02℃/a)and annual precipitation(2.07 mm/a).The correlation analysis demonstrates that the role of temperature presents more significant correlation with glacier recession than precipitation.There is a temporal hysteresis in the response of glacier change to climate change.Increasing trend of temperature in summer proves to be the driving force behind the Kaidu-Kongque basin glacier recession during the recent 20 years.
基金the financial support of the National Natural Science Foundation of China(42176212,41976074 and 41302034)the Marine S&T Fund of Shandong Province for Laoshan Laboratory(2021QNLM020002)the Marine Geological Survey Program(DD20221704)。
文摘The Qilian Mountain permafrost area located in the northern of Qinghai-Tibet Plateau is a favorable place for natural gas hydrate formation and enrichment,due to its well-developed fractures and abundant gas sources.Understanding the formation and distribution of multi-component gas hydrates in fractures is crucial in accurately evaluating the hydrate reservoir resources in this area.The hydrate formation experiments were carried out using the core samples drilled from hydrate-bearing sediments in Qilian Mountain permafrost area and the multi-component gas with similar composition to natural gas hydrates in Qilian Mountain permafrost area.The formation and distribution characteristics of multi-component gas hydrates in core samples were observed in situ by X-ray Computed Tomography(X-CT)under high pressure and low temperature conditions.Results show that hydrates are mainly formed and distributed in the fractures with good connectivity.The ratios of volume of hydrates formed in fractures to the volume of fractures are about 96.8%and 60.67%in two different core samples.This indicates that the fracture surface may act as a favorable reaction site for hydrate formation in core samples.Based on the field geological data and the experimental results,it is preliminarily estimated that the inventory of methane stored in the fractured gas hydrate in Qilian Mountain permafrost area is about 8.67×1013 m3,with a resource abundance of 8.67×108 m3/km2.This study demonstrates the great resource potential of fractured gas hydrate and also provides a new way to further understand the prospect of natural gas hydrate and other oil and gas resources in Qilian Mountain permafrost area.
基金Sponsored by National Youth Science Foundation(51408507)China Postdoctoral Science Foundation(2015M570385)
文摘Taking the planning of elderly building for example, this paper explored the spatial layout, entrance/exit design, road space design and landscape design of the elderly residential districts against the background of population aging and increasing demands of ecological residence. In addition, the paper tried to fully use outstanding natural environment in mountainous areas to plan the elderly community, and integrate the characteristics of mountainous community planning and elderly buildings.
基金This work was financially supported by National Natural Science Foundation of China(41972262)Hebei Natural Science Foundation for Excellent Young Scholars(D2020504032)+1 种基金Central Plains Science and technology innovation leader Project(214200510030)Key research and development Project of Henan province(221111321500).
文摘Landslide is a serious natural disaster next only to earthquake and flood,which will cause a great threat to people’s lives and property safety.The traditional research of landslide disaster based on experience-driven or statistical model and its assessment results are subjective,difficult to quantify,and no pertinence.As a new research method for landslide susceptibility assessment,machine learning can greatly improve the landslide susceptibility model’s accuracy by constructing statistical models.Taking Western Henan for example,the study selected 16 landslide influencing factors such as topography,geological environment,hydrological conditions,and human activities,and 11 landslide factors with the most significant influence on the landslide were selected by the recursive feature elimination(RFE)method.Five machine learning methods[Support Vector Machines(SVM),Logistic Regression(LR),Random Forest(RF),Extreme Gradient Boosting(XGBoost),and Linear Discriminant Analysis(LDA)]were used to construct the spatial distribution model of landslide susceptibility.The models were evaluated by the receiver operating characteristic curve and statistical index.After analysis and comparison,the XGBoost model(AUC 0.8759)performed the best and was suitable for dealing with regression problems.The model had a high adaptability to landslide data.According to the landslide susceptibility map of the five models,the overall distribution can be observed.The extremely high and high susceptibility areas are distributed in the Funiu Mountain range in the southwest,the Xiaoshan Mountain range in the west,and the Yellow River Basin in the north.These areas have large terrain fluctuations,complicated geological structural environments and frequent human engineering activities.The extremely high and highly prone areas were 12043.3 km^(2)and 3087.45 km^(2),accounting for 47.61%and 12.20%of the total area of the study area,respectively.Our study reflects the distribution of landslide susceptibility in western Henan Province,which provides a scientific basis for regional disaster warning,prediction,and resource protection.The study has important practical significance for subsequent landslide disaster management.
基金The National Natural Science Foundation of China(42371285)。
文摘Cropland abandonment is common and widely distributed in hilly and mountainous areas.Clarifying the current situation and development of cropland abandonment can provide reference for the rational and classified management of cropland abandonment in hilly and mountainous areas.Taking Jiangxi Province as the study area,and using the Google Earth Engine and Landsat data,the scale and years of abandoned cropland from 2002 to 2020 were calculated by using the random forest classifier and rules for identifying cropland abandonment.The spatio-temporal pattern of cropland abandonment at the county level was analyzed.The results indicated that the overall accuracy of land use classification was over 90%.The cropland abandonment rate ranged from 3%to 5.5%from 2002 to 2020,while the cropland abandonment rate was highest in 2013 and showed a downward trend after 2017.Among the years,the area of first-time abandoned cropland was the largest in 2005.The distribution of the cropland abandonment rate was low in the middle and north,but high in the surrounding area and the south.A notable positive spatial correlation was observed in the cropland abandonment rate,with a gradual intensification of spatial clustering.The LISA cluster map revealed a significant north-south disparity,exhibiting an incremental trend over time in the characteristics of the“High-High”cluster in the Southeastern Mountainous Area and the“Low-Low”cluster in the Poyang Lake Hilly Plain in Jiangxi.The results of this study can provide data for extracting spatial information and analyzing the driving factors of cropland abandonment in hilly and mountainous areas,and they can also provide a basis for the development of policies for the utilization and classification management of abandoned cropland.