Accurate short-term traffic flow prediction plays a crucial role in intelligent transportation system (ITS), because it can assist both traffic authorities and individual travelers make better decisions. Previous rese...Accurate short-term traffic flow prediction plays a crucial role in intelligent transportation system (ITS), because it can assist both traffic authorities and individual travelers make better decisions. Previous researches mostly focus on shallow traffic prediction models, which performances were unsatisfying since short-term traffic flow exhibits the characteristics of high nonlinearity, complexity and chaos. Taking the spatial and temporal correlations into consideration, a new traffic flow prediction method is proposed with the basis on the road network topology and gated recurrent unit (GRU). This method can help researchers without professional traffic knowledge extracting generic traffic flow features effectively and efficiently. Experiments are conducted by using real traffic flow data collected from the Caltrans Performance Measurement System (PEMS) database in San Diego and Oakland from June 15, 2017 to September 27, 2017. The results demonstrate that our method outperforms other traditional approaches in terms of mean absolute percentage error (MAPE), symmetric mean absolute percentage error (SMAPE) and root mean square error (RMSE).展开更多
To make elevator group control system better follow the change of elevator traffic flow (ETF) in order to adjust the control strategy,the prediction method of support vector machine (SVM) in combination with phase spa...To make elevator group control system better follow the change of elevator traffic flow (ETF) in order to adjust the control strategy,the prediction method of support vector machine (SVM) in combination with phase space reconstruction has been proposed for ETF.Firstly,the phase space reconstruction for elevator traffic flow time series (ETFTS) is processed.Secondly,the small data set method is applied to calculate the largest Lyapunov exponent to judge the chaotic property of ETF.Then prediction model of ETFTS based on SVM is founded.Finally,the method is applied to predict the time series for the incoming and outgoing passenger flow respectively using ETF data collected in some building.Meanwhile,it is compared with RBF neural network model.Simulation results show that the trend of factual traffic flow is better followed by predictive traffic flow.SVM algorithm has much better prediction performance.The fitting and prediction of ETF with better effect are realized.展开更多
Considering both the high complexity of urban traffic flow systems and the bounded rationality of travelers,providing traffic information to all travelers is an effective method to induce each individual to make a mor...Considering both the high complexity of urban traffic flow systems and the bounded rationality of travelers,providing traffic information to all travelers is an effective method to induce each individual to make a more rational route-choice decision.Within Advanced Traveler Information System(ATIS)working environment,temporal and spatial evolution processes of traffic flow in urban road networks are closely related to strategies of providing traffic information and contents of information.In view of the day-to-day route-choice situations,this study constructs original updating models of the cognitive travel time of travelers under four conditions,including not providing any route travel time,only providing the most rapid route travel time,only providing the most congested route travel time,and providing all the routes travel times.The disaggregate route-choice approach is adopted for simulation to reveal the relationship between the evolution process of network traffic flow and the strategy of providing traffic information.The simulation shows that providing traffic information to all travelers cannot improve the operational efficiency of road networks.It is noteworthy that an inappropriate information feedback strategy would lead to intense variation in various routes traffic flow.Compared with incomplete information feedback strategies,it is inefficient and superfluous to provide complete traffic information to all travelers.展开更多
Traffic congestion in road transportation networks is a persistent problem in major metropolitan cities around the world.In this context,this paper deals with exploiting underutilized road capacities in a network to l...Traffic congestion in road transportation networks is a persistent problem in major metropolitan cities around the world.In this context,this paper deals with exploiting underutilized road capacities in a network to lower the congestion on overutilized links while simultaneously satisfying the system optimal flow assignment for sustainable transportation.Four congestion mitigation strategies are identified based on deviation and relative deviation of link volume from the corresponding capacity.Consequently,four biobjective mathematical programming optimal flow distribution(OFD)models are proposed.The case study results demonstrate that all the proposed models improve system performance and reduce congestion on high volume links by shifting flows to low volumeto-capacity links compared to UE and SO models.Among the models,the system optimality with minimal sum and maximum absolute relative-deviation models(SO-SAR and SO-MAR)showed superior results for different performance measures.The SO-SAR model yielded 50%and 30%fewer links at higher link utilization factors than UE and SO models,respectively.Also,it showed more than 25%improvement in path travel times compared to UE travel time for about 100 paths and resulted in the least network congestion index of1.04 compared to the other OFD and UE models.Conversely,the SO-MAR model yielded the least total distance and total system travel time,resulting in lower fuel consumption and emissions,thus contributing to sustainability.The proposed models contribute towards efficient transportation infrastructure management and will be of interest to transportation planners and traffic managers.展开更多
优化城市道路中的交通信号灯控制是低成本地提升城市交通路网性能的方法之一。该研究提出了一种利用策略梯度(Policy Gradient, PG)强化调优的交通灯控制算法。该算法引入了道路压力项、旅程时间项和黑名单机制项,利用统计方式预测汽车...优化城市道路中的交通信号灯控制是低成本地提升城市交通路网性能的方法之一。该研究提出了一种利用策略梯度(Policy Gradient, PG)强化调优的交通灯控制算法。该算法引入了道路压力项、旅程时间项和黑名单机制项,利用统计方式预测汽车行程轨迹,并采用策略梯度估计的优化算法调整算法中的参数。在数据挖掘国际会议Knowledge Discovery and Data Mining (KDD)组织的算法竞赛KDD Cup 2021城市大脑挑战赛中,获得了冠军的成绩。在该挑战赛提供的城市路网规模复杂车流仿真平台上的实验结果表明,算法具有应用于实际场景的价值。展开更多
基金Supported by the Support Program of the National 12th Five Year-Plan of China(2015BAK25B03)
文摘Accurate short-term traffic flow prediction plays a crucial role in intelligent transportation system (ITS), because it can assist both traffic authorities and individual travelers make better decisions. Previous researches mostly focus on shallow traffic prediction models, which performances were unsatisfying since short-term traffic flow exhibits the characteristics of high nonlinearity, complexity and chaos. Taking the spatial and temporal correlations into consideration, a new traffic flow prediction method is proposed with the basis on the road network topology and gated recurrent unit (GRU). This method can help researchers without professional traffic knowledge extracting generic traffic flow features effectively and efficiently. Experiments are conducted by using real traffic flow data collected from the Caltrans Performance Measurement System (PEMS) database in San Diego and Oakland from June 15, 2017 to September 27, 2017. The results demonstrate that our method outperforms other traditional approaches in terms of mean absolute percentage error (MAPE), symmetric mean absolute percentage error (SMAPE) and root mean square error (RMSE).
基金Sponsored by the National Eleventh Five year Plan Key Project of Ministry of Science and Technology of China (Grant No. 2006BAJ03A05-05)
文摘To make elevator group control system better follow the change of elevator traffic flow (ETF) in order to adjust the control strategy,the prediction method of support vector machine (SVM) in combination with phase space reconstruction has been proposed for ETF.Firstly,the phase space reconstruction for elevator traffic flow time series (ETFTS) is processed.Secondly,the small data set method is applied to calculate the largest Lyapunov exponent to judge the chaotic property of ETF.Then prediction model of ETFTS based on SVM is founded.Finally,the method is applied to predict the time series for the incoming and outgoing passenger flow respectively using ETF data collected in some building.Meanwhile,it is compared with RBF neural network model.Simulation results show that the trend of factual traffic flow is better followed by predictive traffic flow.SVM algorithm has much better prediction performance.The fitting and prediction of ETF with better effect are realized.
基金the National Social Science Foundation of China(Grant No.14XGL011)the Humanity and Social Science Youth Foundation of Ministry of Education in China(Grant No.12YJC630200)+1 种基金the Natural Science Foundation of Gansu Province in China(Grant No.145RJZA190)the Social Science Planning Project of Gansu Province in China(Grant No.13YD066).
文摘Considering both the high complexity of urban traffic flow systems and the bounded rationality of travelers,providing traffic information to all travelers is an effective method to induce each individual to make a more rational route-choice decision.Within Advanced Traveler Information System(ATIS)working environment,temporal and spatial evolution processes of traffic flow in urban road networks are closely related to strategies of providing traffic information and contents of information.In view of the day-to-day route-choice situations,this study constructs original updating models of the cognitive travel time of travelers under four conditions,including not providing any route travel time,only providing the most rapid route travel time,only providing the most congested route travel time,and providing all the routes travel times.The disaggregate route-choice approach is adopted for simulation to reveal the relationship between the evolution process of network traffic flow and the strategy of providing traffic information.The simulation shows that providing traffic information to all travelers cannot improve the operational efficiency of road networks.It is noteworthy that an inappropriate information feedback strategy would lead to intense variation in various routes traffic flow.Compared with incomplete information feedback strategies,it is inefficient and superfluous to provide complete traffic information to all travelers.
文摘Traffic congestion in road transportation networks is a persistent problem in major metropolitan cities around the world.In this context,this paper deals with exploiting underutilized road capacities in a network to lower the congestion on overutilized links while simultaneously satisfying the system optimal flow assignment for sustainable transportation.Four congestion mitigation strategies are identified based on deviation and relative deviation of link volume from the corresponding capacity.Consequently,four biobjective mathematical programming optimal flow distribution(OFD)models are proposed.The case study results demonstrate that all the proposed models improve system performance and reduce congestion on high volume links by shifting flows to low volumeto-capacity links compared to UE and SO models.Among the models,the system optimality with minimal sum and maximum absolute relative-deviation models(SO-SAR and SO-MAR)showed superior results for different performance measures.The SO-SAR model yielded 50%and 30%fewer links at higher link utilization factors than UE and SO models,respectively.Also,it showed more than 25%improvement in path travel times compared to UE travel time for about 100 paths and resulted in the least network congestion index of1.04 compared to the other OFD and UE models.Conversely,the SO-MAR model yielded the least total distance and total system travel time,resulting in lower fuel consumption and emissions,thus contributing to sustainability.The proposed models contribute towards efficient transportation infrastructure management and will be of interest to transportation planners and traffic managers.
文摘优化城市道路中的交通信号灯控制是低成本地提升城市交通路网性能的方法之一。该研究提出了一种利用策略梯度(Policy Gradient, PG)强化调优的交通灯控制算法。该算法引入了道路压力项、旅程时间项和黑名单机制项,利用统计方式预测汽车行程轨迹,并采用策略梯度估计的优化算法调整算法中的参数。在数据挖掘国际会议Knowledge Discovery and Data Mining (KDD)组织的算法竞赛KDD Cup 2021城市大脑挑战赛中,获得了冠军的成绩。在该挑战赛提供的城市路网规模复杂车流仿真平台上的实验结果表明,算法具有应用于实际场景的价值。