期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Predictive cruise control for heavy trucks based on slope information under cloud control system 被引量:5
1
作者 LI Shuyan WAN Keke +3 位作者 GAO Bolin LI Rui WANG Yue LI Keqiang 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2022年第4期812-826,共15页
With the advantage of fast calculation and map resources on cloud control system(CCS), cloud-based predictive cruise control(CPCC) for heavy trucks has great potential to improve energy efficiency, which is significan... With the advantage of fast calculation and map resources on cloud control system(CCS), cloud-based predictive cruise control(CPCC) for heavy trucks has great potential to improve energy efficiency, which is significant to achieve the goal of national carbon neutrality. However, most investigations focus on the on-board predictive cruise control(PCC) system,lack of research on CPCC architecture under CCS. Besides, the current PCC algorithms have the problems of a single control target and high computational complexity, which hinders the improvement of the control effect. In this paper, a layered architecture based on CCS is proposed to effectively address the realtime computing of CPCC system and the deployment of its algorithm on vehicle-cloud. In addition, based on the dynamic programming principle and the proposed road point segmentation method(RPSM), a PCC algorithm is designed to optimize the speed and gear of heavy trucks with slope information. Simulation results show that the CPCC system can adaptively control vehicle driving through the slope prediction, with fuel-saving rate of 6.17% in comparison with the constant cruise control. Also,compared with other similar algorithms, the PCC algorithm can make the engine operate more in the efficient zone by cooperatively optimizing the gear and speed. Moreover, the RPSM algorithm can reconfigure the road in advance, with a 91% roadpoint reduction rate, significantly reducing algorithm complexity.Therefore, this study has essential research significance for the economic driving of heavy trucks and the promotion of the CPCC system. 展开更多
关键词 predictive cruise control(PCC) cloud control system(CCS) layered architecture road point segmentation method(RPSM) economic driving
下载PDF
Impacts of Down-Up Hill Segment on the Threshold of Shock Formation of Ring Road Vehicular Flow
2
作者 Zejing Hu M.N.Smirnova +2 位作者 N.N.Smirnov Yongliang Zhang Zuojin Zhu 《Advances in Applied Mathematics and Mechanics》 SCIE 2023年第5期1315-1334,共20页
The study of impacts of down-up hill road segment on the density threshold of traffic shock formation in ring road vehicular flow is helpful to the deep understanding of sags’bottleneck effect.Sags are freeway segmen... The study of impacts of down-up hill road segment on the density threshold of traffic shock formation in ring road vehicular flow is helpful to the deep understanding of sags’bottleneck effect.Sags are freeway segments along which the gradient increases gradually in the traffic direction.The main aim of this paper is to seek the density threshold of shock formation of vehicular flow in ring road with down-up hill segment,because down-up hill roadway segment is a source to cause capacity reduction that is an attractive topic in vehicular traffic science.To seek the density threshold numerically,a viscoelastic continuum model[1]is extended and used.To solve the model equations,a fifth-order weighted essentially non-oscillatory scheme for spatial discretization,and a 3rd order Runge-Kutta scheme for time partial derivative term are used.Validation by existing observation data and the Navier-Stokes like model[2]extended as EZM is done before conducting extensive numerical simulations.For ring road vehicular flow with three separated down-up hill segments,it is found that the density threshold of shock formation decreases monotonically with the relative difference of free flow speed,this variation can be simply fitted by a third order polynomial. 展开更多
关键词 Down-up hill road segment viscoelastic continuum model sags’bottleneck effect density threshold WENO5 scheme
原文传递
Investigating the influence of segmentation in estimating safety performance functions for roadway sections
3
作者 Salvatore Cafiso Carmelo D'Agostino Bhagwant Persaud 《Journal of Traffic and Transportation Engineering(English Edition)》 2018年第2期129-136,共8页
Safety performance functions(SPFs) are crucial to science-based road safety management.Success in developing and applying SPFs, apart data quality and availability, depends fundamentally on two key factors: the val... Safety performance functions(SPFs) are crucial to science-based road safety management.Success in developing and applying SPFs, apart data quality and availability, depends fundamentally on two key factors: the validity of the statistical inferences for the available data and on how well the data can be organized into distinct homogeneous entities. The latter aspect plays a key role in the identification and treatment of road sections or corridors with problems related to safety. Indeed, the segmentation of a road network could be especially critical in the development of SPFs that could be used in safety management for roadway types, such as motorways(freeways in North America), which have a large number of variables that could result in very short segments if these are desired to be homogeneous. This consequence, from an analytical point of view, can be a problem when the location of crashes is not precise and when there is an overabundance of segments with zero crashes. Lengthening the segments for developing and applying SPFs can mitigate this problem, but at a sacrifice of homogeneity. This paper seeks to address this dilemma by investigating four approaches for segmentation for motorways, using sample data from Italy. The best results were obtained for the segmentation based on two curves and two tangents within a segment and with fixed length segments. The segmentation characterized by a constant value of all original variables inside each segment was the poorest approach by all measures. 展开更多
关键词 road safety management Rural motorways Safety performance functions segmentation Crash prediction General estimating equation
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部