In this research we proposed a strategy for location privacy protection which addresses the issues related with existing location privacy protection techniques. Mix-Zones and pseudonyms are considered as the basic bui...In this research we proposed a strategy for location privacy protection which addresses the issues related with existing location privacy protection techniques. Mix-Zones and pseudonyms are considered as the basic building blocks for location privacy; however, continuously changing pseudonyms process at multiple locations can enhance user privacy. It has been revealed that changing pseudonym at improper time and location may threat to user's privacy. Moreover, certain methods related to pseudonym change have been proposed to attain desirable location privacy and most of these solutions are based upon velocity, GPS position and direction of angle. We analyzed existing methods related to location privacy with mix zones, such as RPCLP, EPCS and MODP, where it has been observed that these methods are not adequate to attain desired level of location privacy and suffered from large number of pseudonym changes. By analyzing limitations of existing methods, we proposed Dynamic Pseudonym based multiple mix zone(DPMM) technique, which ensures highest level of accuracy and privacy. We simulate our data by using SUMO application and analysis results has revealed that DPMM outperformed existing pseudonym change techniques and achieved better results in terms of acquiring high privacy with small number of pseudonym change.展开更多
The paper proposes a methodological scheme that thoroughly accounts for natural-climatic conditions which can impair the stability and longevity of transport facilities (roadways), to ensure the best possible qualit...The paper proposes a methodological scheme that thoroughly accounts for natural-climatic conditions which can impair the stability and longevity of transport facilities (roadways), to ensure the best possible quality of the initial road design. Factors determining the formation of water-heating mode subgrade soils are allocated, and an information database for mathematical modeling of geocomplexes is shown. Values of strength and deformability of clay soils are calculated within the limits of the defined, homogeneous road districts in Western Siberia to provide the required level of reliability of design solutions.展开更多
The Indian Ocean and the West Pacific Ocean and their ocean-continent connection zones are the core area of "the Belt and Road". Scientific and in-depth recognition to the natural environment, disaster distribution,...The Indian Ocean and the West Pacific Ocean and their ocean-continent connection zones are the core area of "the Belt and Road". Scientific and in-depth recognition to the natural environment, disaster distribution, resources, energy potential of "the Belt and Road" development, is the cut-in point of the current Earth science community to serve urgent national needs. This paper mainly discusses the following key tectonic problems in the West Pacific and North Indian oceans and their ocean-continent connection zones (OCCZs): 1. modern marine geodynamic problems related to the two oceans. Based on the research and development needs to the two oceans and the ocean-continent transition zones, this item includes the following questions. (1) Plate origin, growth, death and evolution in the two oceans, for example, 1) The initial origin and process of the triangle Pacific Plate including causes and difference of the Galapagos and West Shatsky microplates; 2) spatial and temporal process, present status and trends of the plates within the Paleo- or Present-day Pacific Ocean to the evolution of the East Asian Continental Domain; 3) origin and evolution of the Indian Ocean and assembly and dispersal of supercontinents. (2) Latest research progress and problems of mid-oceanic ridges: 1) the ridge-hot spot interaction and ridge accretion, how to think about the relationship between vertical accretion behavior of thousands years or tens of thousands years and lateral spreading of millions years at 0 Ma mid- oceanic ridges; 2) the difference of formation mechanisms between the back-arc basin extension and the normal mid-oceanic ridge spreading; 3) the differentials between ultra-slow Indian Ocean and the rapid Pacific spreading, whether there are active and passive spreading, and a push force in the mid-oceanic ridge; 4) mid-oceanic ridge jumping and termination: causes of the intra-oceanic plate reorganization, termination, and spatial jumps; 5) interaction of mantle plume and mid-oceanic ridge. (3) On the intra- oceanic subduetion and tectonics: 1) the origin ofintra-oceanic arc and subduction, ridge subduction and slab window on continental margins, transform faults and transform-type continental margin; 2) causes of the large igneous provinces, oceanic plateaus and seamount chains. (4) The oceanic core complex and rheology of oceanic crust in the Indian Ocean. (5) Advances on the driving force within oceanic plates, including mantle convection, negative buoyancy, trench suction and mid-oceanic ridge push, is reviewed and discussed. 2. The ocean-continent connection zones near the two oceans, including: (1) Property of continental margin basement: the crusts of the Okinawa Trough, the Okhotsk Sea, and east of New Zealand are the continental crusts or oceanic crusts, and origin of micro-continent within the oceans; (2) the ocean-continent transition and coupling process, revealing from the comparison of the major events between the West Pacific Ocean seamount chains and the continental margins, mantle exhumation and the ocean-continent transition zones, causes of transform fault within back-arc basin, formation and subduction of transform-type continental margin; (3) strike-slip faulting between the West Pacific Ocean and the East Asian Continent and its temporal and spatial range and scale; (4) connection between deep and surface processes within the two ocean and their connection zones, namely the assembly among the Eurasian, Pacific and India-Australia plates and the related effect from the deep mantle, lithosphere, to crust and surface Earth system, and some related issues within the connection zones of the two oceans under the super-convergent background. 3. On the relationship, especially their present relations and evolutionary trends, between the Paleo- or Present-day Pacific plates and the Tethyan Belt, the Eurasian Plate or the plates within the Indian Ocean. At last, this paper makes a perspective of the related marine geology, ocean-continent connection zone and in-depth geology for the two oceans and one zone.展开更多
基金supported by the National Natural Science Foundation of China (Grant No.61401040,Grant No.61372110)
文摘In this research we proposed a strategy for location privacy protection which addresses the issues related with existing location privacy protection techniques. Mix-Zones and pseudonyms are considered as the basic building blocks for location privacy; however, continuously changing pseudonyms process at multiple locations can enhance user privacy. It has been revealed that changing pseudonym at improper time and location may threat to user's privacy. Moreover, certain methods related to pseudonym change have been proposed to attain desirable location privacy and most of these solutions are based upon velocity, GPS position and direction of angle. We analyzed existing methods related to location privacy with mix zones, such as RPCLP, EPCS and MODP, where it has been observed that these methods are not adequate to attain desired level of location privacy and suffered from large number of pseudonym changes. By analyzing limitations of existing methods, we proposed Dynamic Pseudonym based multiple mix zone(DPMM) technique, which ensures highest level of accuracy and privacy. We simulate our data by using SUMO application and analysis results has revealed that DPMM outperformed existing pseudonym change techniques and achieved better results in terms of acquiring high privacy with small number of pseudonym change.
基金supported by a grant from Russian Foundation for Basic Research (Project No. 14-07-00673 A)
文摘The paper proposes a methodological scheme that thoroughly accounts for natural-climatic conditions which can impair the stability and longevity of transport facilities (roadways), to ensure the best possible quality of the initial road design. Factors determining the formation of water-heating mode subgrade soils are allocated, and an information database for mathematical modeling of geocomplexes is shown. Values of strength and deformability of clay soils are calculated within the limits of the defined, homogeneous road districts in Western Siberia to provide the required level of reliability of design solutions.
基金financially supported by the National Key Research and Development Program of China (Nos.2017YFC0601401)National Science and Technology Major Project (No.2016ZX05004001-003)+2 种基金NSFC projects (grant nos. 41702206, 41190072)some by the Taishan Scholar Program to Li Sanzhongfinancial support of the Aoshan Elite Scientist Plan of Qingdao National Laboratory for Marine Science and Technology to Prof. Li Sanzhong and his research group
文摘The Indian Ocean and the West Pacific Ocean and their ocean-continent connection zones are the core area of "the Belt and Road". Scientific and in-depth recognition to the natural environment, disaster distribution, resources, energy potential of "the Belt and Road" development, is the cut-in point of the current Earth science community to serve urgent national needs. This paper mainly discusses the following key tectonic problems in the West Pacific and North Indian oceans and their ocean-continent connection zones (OCCZs): 1. modern marine geodynamic problems related to the two oceans. Based on the research and development needs to the two oceans and the ocean-continent transition zones, this item includes the following questions. (1) Plate origin, growth, death and evolution in the two oceans, for example, 1) The initial origin and process of the triangle Pacific Plate including causes and difference of the Galapagos and West Shatsky microplates; 2) spatial and temporal process, present status and trends of the plates within the Paleo- or Present-day Pacific Ocean to the evolution of the East Asian Continental Domain; 3) origin and evolution of the Indian Ocean and assembly and dispersal of supercontinents. (2) Latest research progress and problems of mid-oceanic ridges: 1) the ridge-hot spot interaction and ridge accretion, how to think about the relationship between vertical accretion behavior of thousands years or tens of thousands years and lateral spreading of millions years at 0 Ma mid- oceanic ridges; 2) the difference of formation mechanisms between the back-arc basin extension and the normal mid-oceanic ridge spreading; 3) the differentials between ultra-slow Indian Ocean and the rapid Pacific spreading, whether there are active and passive spreading, and a push force in the mid-oceanic ridge; 4) mid-oceanic ridge jumping and termination: causes of the intra-oceanic plate reorganization, termination, and spatial jumps; 5) interaction of mantle plume and mid-oceanic ridge. (3) On the intra- oceanic subduetion and tectonics: 1) the origin ofintra-oceanic arc and subduction, ridge subduction and slab window on continental margins, transform faults and transform-type continental margin; 2) causes of the large igneous provinces, oceanic plateaus and seamount chains. (4) The oceanic core complex and rheology of oceanic crust in the Indian Ocean. (5) Advances on the driving force within oceanic plates, including mantle convection, negative buoyancy, trench suction and mid-oceanic ridge push, is reviewed and discussed. 2. The ocean-continent connection zones near the two oceans, including: (1) Property of continental margin basement: the crusts of the Okinawa Trough, the Okhotsk Sea, and east of New Zealand are the continental crusts or oceanic crusts, and origin of micro-continent within the oceans; (2) the ocean-continent transition and coupling process, revealing from the comparison of the major events between the West Pacific Ocean seamount chains and the continental margins, mantle exhumation and the ocean-continent transition zones, causes of transform fault within back-arc basin, formation and subduction of transform-type continental margin; (3) strike-slip faulting between the West Pacific Ocean and the East Asian Continent and its temporal and spatial range and scale; (4) connection between deep and surface processes within the two ocean and their connection zones, namely the assembly among the Eurasian, Pacific and India-Australia plates and the related effect from the deep mantle, lithosphere, to crust and surface Earth system, and some related issues within the connection zones of the two oceans under the super-convergent background. 3. On the relationship, especially their present relations and evolutionary trends, between the Paleo- or Present-day Pacific plates and the Tethyan Belt, the Eurasian Plate or the plates within the Indian Ocean. At last, this paper makes a perspective of the related marine geology, ocean-continent connection zone and in-depth geology for the two oceans and one zone.