Highway maintenance mileage reached 5.25 million kilometers in China by 2021.Ultra-thin overlay is one of the most commonly used maintenance technologies,which can significantly enhance the economic and environmental ...Highway maintenance mileage reached 5.25 million kilometers in China by 2021.Ultra-thin overlay is one of the most commonly used maintenance technologies,which can significantly enhance the economic and environmental benefits of pavements.To promote the low-carbon development of ultrathin overlays,this paper mainly studied the mechanism and influencing factors of several ultra-thin overlay functions.Firstly,the skid resistance,noise reduction,rutting resistance,and crack resistance of ultrathin overlays were evaluated.The results indicated that the high-quality aggregates improved the skid and rutting resistance of ultra-thin overlay by 5%-20%.The optimized gradations and modified binders reduced noise of ultra-thin overlay by 0.4-6.0 dB.The high viscosity modified binders improved the rutting resistance of ultra-thin overlay by about 10%-130%.Basalt fiber improved the cracking resistance of ultra-thin overlay by more than 20%.Due to the thinner thickness and better road performance,the performance-based engineering cost of ultra-thin overlay was reduced by about 30%-40%compared with conventional overlays.Secondly,several environmentally friendly functions of ultra-thin overlay were investigated,including snow melting and deicing,exhaust gas purification and pavement cooling.The lower thickness of ultra-thin overlay was conducive to the diffusion of chloride-based materials to the pavement surface.Therefore,the snow melting effect of self-ice-melting was better.In addition,the ultra-thin overlay mixture containing photocatalytic materials could decompose 20%-50%of the exhaust gas.The colored ultra-thin overlay was able to reduce the temperature of the pavement by up to 8.1℃.The temperature difference between the upper and lower surfaces of the ultra-thin overlay containing thermal resistance materials could reach up to 12.8℃.In addition,numerous typical global engineering applications of functional ultra-thin overlay were summarized.This review can help better understand the functionality of ultra-thin overlays and promote the realization of future multi-functional and low-carbon road maintenance.展开更多
The network of Himalayan roadways and highways connects some remote regions of valleys or hill slopes,which is vital for India’s socio-economic growth.Due to natural and artificial factors,frequency of slope instabil...The network of Himalayan roadways and highways connects some remote regions of valleys or hill slopes,which is vital for India’s socio-economic growth.Due to natural and artificial factors,frequency of slope instabilities along the networks has been increasing over last few decades.Assessment of stability of natural and artificial slopes due to construction of these connecting road networks is significant in safely executing these roads throughout the year.Several rock mass classification methods are generally used to assess the strength and deformability of rock mass.This study assesses slope stability along the NH-1A of Ramban district of North Western Himalayas.Various structurally and non-structurally controlled rock mass classification systems have been applied to assess the stability conditions of 14 slopes.For evaluating the stability of these slopes,kinematic analysis was performed along with geological strength index(GSI),rock mass rating(RMR),continuous slope mass rating(CoSMR),slope mass rating(SMR),and Q-slope in the present study.The SMR gives three slopes as completely unstable while CoSMR suggests four slopes as completely unstable.The stability of all slopes was also analyzed using a design chart under dynamic and static conditions by slope stability rating(SSR)for the factor of safety(FoS)of 1.2 and 1 respectively.Q-slope with probability of failure(PoF)1%gives two slopes as stable slopes.Stable slope angle has been determined based on the Q-slope safe angle equation and SSR design chart based on the FoS.The value ranges given by different empirical classifications were RMR(37-74),GSI(27.3-58.5),SMR(11-59),and CoSMR(3.39-74.56).Good relationship was found among RMR&SSR and RMR&GSI with correlation coefficient(R 2)value of 0.815 and 0.6866,respectively.Lastly,a comparative stability of all these slopes based on the above classification has been performed to identify the most critical slope along this road.展开更多
With the implementation of the Belt and Road Initiative, China is deepening its cooperation in oil and gas resources with countries along the Initiative. In order to better mitigate risks and enhance the safety of inv...With the implementation of the Belt and Road Initiative, China is deepening its cooperation in oil and gas resources with countries along the Initiative. In order to better mitigate risks and enhance the safety of investments, it is of significant importance to research the oil and gas investment environment in these countries for China's overseas investment macro-layout. This paper proposes an indicator system including 27 indicators from 6 dimensions. On this basis, game theory models combined with global entropy method and analytic hierarchy process are applied to determine the combined weights, and the TOPSIS-GRA model is utilized to assess the risks of oil and gas investment in 76 countries along the Initiative from 2014 to 2021. Finally, the GM(1,1) model is employed to predict risk values for 2022-2025. In conclusion, oil and gas resources and political factors have the greatest impact on investment environment risk, and 12 countries with greater investment potential are selected through cluster analysis in conjunction with the predicted results. The research findings may provide scientific decisionmaking recommendations for the Chinese government and oil enterprises to strengthen oil and gas investment cooperation with countries along the Belt and Road Initiative.展开更多
Ancient Yunnan was one of the most significant regions along China’s ancient“Southern Silk Road.”During the Nanzhao period(738–902)of the late Tang Dynasty,Yunnan’s silk-weaving industry underwent a qualitative l...Ancient Yunnan was one of the most significant regions along China’s ancient“Southern Silk Road.”During the Nanzhao period(738–902)of the late Tang Dynasty,Yunnan’s silk-weaving industry underwent a qualitative leap as skilled silk craftsmen from the Bashu area migrated to Yunnan and introduced mulberry planting,silkworm breeding,and advanced silk-weaving techniques from Sichuan to the region.Consequently,people in Yunnan gradually acquired expertise in brocade weaving and embroidery.Many even mastered complex silk-weaving techniques.The development and progress of the silk-weaving industry in the ancient Yunnan region were intricately linked to the economic function and value of silk as both a commodity and currency along the“Southern Silk Road.”The local government in ancient Yunnan was greatly motivated by the economic interests brought by the development of silk-related industries and recognized the significance of developing the local silk industry.They even initiated a campaign to capture skilled silk craftsmen from Sichuan,aiming to foster the growth of the silk-weaving industry in Yunnan.After years of dedicated efforts from the local government in ancient Yunnan,the region emerged as a significant hub for silk production along China’s ancient“Southern Silk Road.”Despite the devastation caused by the wars in other parts of the country,Yunnan’s silk industry continued to thrive and provide ample silk products to sustain trade along this renowned route.In the contemporary era,amidst the decline of the silk-weaving industry in eastern China,Yunnan has proposed an industrial development strategy known as“relocating the silk-weaving industry from east to west.”This involves introducing advanced silk production techniques from the eastern regions into Yunnan to enhance and enrich its local silk industry,thereby establishing it as a traditional national sector and securing a competitive position within the global silk market.The historical experience of Yunnan’s silk industry demonstrated that economic development opportunities can only be seized through proactive endeavors rather than passive anticipation.The modern Yunnan silk industry,which upholds its historical traditions,continues to actively engage in international high-end technical cooperation,thus ensuring the enduring vitality of the ancient“Southern Silk Road.”展开更多
Internet of Vehicles (IoV) is a new system that enables individual vehicles to connect with nearby vehicles,people, transportation infrastructure, and networks, thereby realizing amore intelligent and efficient transp...Internet of Vehicles (IoV) is a new system that enables individual vehicles to connect with nearby vehicles,people, transportation infrastructure, and networks, thereby realizing amore intelligent and efficient transportationsystem. The movement of vehicles and the three-dimensional (3D) nature of the road network cause the topologicalstructure of IoV to have the high space and time complexity.Network modeling and structure recognition for 3Droads can benefit the description of topological changes for IoV. This paper proposes a 3Dgeneral roadmodel basedon discrete points of roads obtained from GIS. First, the constraints imposed by 3D roads on moving vehicles areanalyzed. Then the effects of road curvature radius (Ra), longitudinal slope (Slo), and length (Len) on speed andacceleration are studied. Finally, a general 3D road network model based on road section features is established.This paper also presents intersection and road section recognition methods based on the structural features ofthe 3D road network model and the road features. Real GIS data from a specific region of Beijing is adopted tocreate the simulation scenario, and the simulation results validate the general 3D road network model and therecognitionmethod. Therefore, thiswork makes contributions to the field of intelligent transportation by providinga comprehensive approach tomodeling the 3Droad network and its topological changes in achieving efficient trafficflowand improved road safety.展开更多
Modifying agents 2,2-Bis(4-glycidyloxyphenyl)propane(2BPE)and dibutyl phthalate(DBP)were selected to enhance the compatibility.By using molecular simulation software(Materials Studio,MS),nine systems were constructed,...Modifying agents 2,2-Bis(4-glycidyloxyphenyl)propane(2BPE)and dibutyl phthalate(DBP)were selected to enhance the compatibility.By using molecular simulation software(Materials Studio,MS),nine systems were constructed,including molecular models of aged asphalt and WVO monomers with 2BPE and/or DBP.The solubility parameters,Flory-Huggins parameters,and interaction energies of these systems were calculated to determine the impact of 2BPE and DBP on the compatibility of WVO and aged asphalt.Results showed that the addition of 2BPE and DBP reduced the difference in the solubility parameters between WVO and aged asphalt,thus improving the compatibility between WVO and aged asphalt.Additionally,using a combination of 2BPE and DBP in both aged asphalt and rejuvenator was found to be more effective than using either 2BPE or DBP alone.Finally,it was determined that evaluating the compatibility of WVO and aged asphalt using Van der Waals potential and non-bonding energy as evaluation indicators was more accurate than using electrostatic potential energy.展开更多
The latticed dunes in the Tengger Desert are widely distributed,and the sand-blocking fence placed here are highly susceptible to local failure due to complex wind-sand activities,posing a serious threat to the safe o...The latticed dunes in the Tengger Desert are widely distributed,and the sand-blocking fence placed here are highly susceptible to local failure due to complex wind-sand activities,posing a serious threat to the safe operation of the highway.To explore the local failure mechanism of sand-blocking fence in the latticed dune area,the local failure of sand-blocking fence in the latticed dune areas along the Wuhai-Maqin Highway in China was observed.Taking the first main ridge of the latticed dune as the placement location,the structure of the wind-sand flow field of sand-blocking fence placed at top,the bottom and the middle of windward slope was analyzed by Computational Fluid Dynamics(CFD).The results show that when placed at top of the first main ridge,the wind speed near the sand-blocking fence is the highest,up to 15.23 m/s.Therefore,the wind load strength on the sand barrier is correspondingly larger,up to 232.61 N∙m-2.As the strength of material continues to decrease,the nylon net is prone to breakage.The roots of the angle steel posts are susceptible to hollowing by vortex action,which can cause sand-blocking fence to fall over in strong wind conditions.When placed at the bottom of windward slope,wind speed drop near sand-blocking fence is greatest,with the decrease of 12.48-14.32 m/s compared to the original wind speed.This is highly likely to lead to large-scale deposition of sand particles and burial of the sand-blocking fence.When placed in the middle of windward slope,sand-blocking fence is subjected to less wind load strength(168.61N∙m-2)and sand particles are mostly deposited at the bottom of windward slope,with only a small amount of sand accumulating at the root of sand-blocking fence.Based on field observations and numerical modelling results,when the sand-blocking fence is placed in latticed dune area,it should be placed in the middle of the windward slope of the first main ridge as a matter of priority.Besides the sand-blocking fence should be placed at the top of the first main ridge,and sand fixing measures should be added.展开更多
This paper addresses the impact of vertical vibration negative effects,unbalanced radial forces generated by the static eccentricity of the hub motor,and road excitation on the suspension performance of Hub Motor Driv...This paper addresses the impact of vertical vibration negative effects,unbalanced radial forces generated by the static eccentricity of the hub motor,and road excitation on the suspension performance of Hub Motor Driven Vehicle(HMDV).A dynamic inertial suspension based on Active Disturbance Rejection Control(ADRC)is proposed,combining the vertical dynamic characteristics of dynamic inertial suspension with the features of ADRC,which distinguishes between internal and external disturbances and arranges the transition process.Firstly,a simulation model of the static eccentricity of the hub motor is established to simulate the unbalanced radial electromagnetic force generated under static eccentricity.A quarter-vehicle model of an HMDV with a controllable dynamic inertial suspension is then constructed.Subsequently,the passive suspension model is studied under different grades of road excitation,and the impact mechanism of suspension performance at speeds of 0–20 m/s is analyzed.Next,the three main components within the ADRC controller are designed for the second-order controlled system,and optimization algorithms are used to optimize its internal parameters.Finally,the performance of the traditional passive suspension,the PID-based controllable dynamic inertial suspension,and the ADRC-based controllable dynamic inertial suspension are analyzed under different road inputs.Simulation results show that,under sinusoidal road input,the ADRC-based controllable dynamic inertial suspension exhibits a 52.3%reduction in the low-frequency resonance peak in the vehicle body acceleration gain diagram compared to the traditional passive suspension,with significant performance optimization in the high-frequency range.Under random road input,the ADRC-based controllable dynamic inertial suspension achieves a 29.53%reduction in the root mean square value of vehicle body acceleration and a 14.87%reduction in dynamic tire load.This indicates that the designed controllable dynamic inertial suspension possesses excellent vibration isolation performance.展开更多
Enhancing ride comfort has always constituted a crucial focus in the design and research of modern tracked vehicles,heavily reliant on the driving system's performance.While the road wheel is a key component of th...Enhancing ride comfort has always constituted a crucial focus in the design and research of modern tracked vehicles,heavily reliant on the driving system's performance.While the road wheel is a key component of the driving system,traditional road wheels predominantly adopt a solid structure,exhibiting subpar adhesion performance and damping effects,thereby falling short of meeting the demands for high-speed,stable,and long-distance driving in tracked vehicles.Addressing this issue,this paper proposes a novel type of flexible road wheel(FRW)characterized by a catenary construction.The study investigates the ride comfort of tracked vehicles equipped with flexible road wheels by integrating finite element and vehicle dynamic.First,three-dimensional(3D)finite element(FE)models of both flexible and rigid road wheels are established,considering material and contact nonlinearities.These models are validated through a wheel radial loading test.Based on the validated FE model,the paper uncovers the relationship between load and radial deformation of the road wheel,forming the basis for a nonlinear mathematical model.Subsequently,a half-car model of a tracked vehicle with seven degrees of freedom is established using Newton's second law.A random road model,considering the track effect and employing white noise,is constructed.The study concludes by examining the ride comfort of tracked vehicles equipped with flexible and rigid road wheels under various speeds and road grades.The results demonstrate that,in comparison to the rigid road wheel(RRW),the flexible road wheel enhances the ride comfort of tracked vehicles on randomly uneven roads.This research provides a theoretical foundation for the implementation of flexible road wheels in tracked vehicles.展开更多
There is no unified planning standard for unstructured roads,and the morphological structures of these roads are complex and varied.It is important to maintain a balance between accuracy and speed for unstructured roa...There is no unified planning standard for unstructured roads,and the morphological structures of these roads are complex and varied.It is important to maintain a balance between accuracy and speed for unstructured road extraction models.Unstructured road extraction algorithms based on deep learning have problems such as high model complexity,high computational cost,and the inability to adapt to current edge computing devices.Therefore,it is best to use lightweight network models.Considering the need for lightweight models and the characteristics of unstructured roads with different pattern shapes,such as blocks and strips,a TMB(Triple Multi-Block)feature extraction module is proposed,and the overall structure of the TMBNet network is described.The TMB module was compared with SS-nbt,Non-bottleneck-1D,and other modules via experiments.The feasibility and effectiveness of the TMB module design were proven through experiments and visualizations.The comparison experiment,using multiple convolution kernel categories,proved that the TMB module can improve the segmentation accuracy of the network.The comparison with different semantic segmentation networks demonstrates that the TMBNet network has advantages in terms of unstructured road extraction.展开更多
Integrating Tiny Machine Learning(TinyML)with edge computing in remotely sensed images enhances the capabilities of road anomaly detection on a broader level.Constrained devices efficiently implement a Binary Neural N...Integrating Tiny Machine Learning(TinyML)with edge computing in remotely sensed images enhances the capabilities of road anomaly detection on a broader level.Constrained devices efficiently implement a Binary Neural Network(BNN)for road feature extraction,utilizing quantization and compression through a pruning strategy.The modifications resulted in a 28-fold decrease in memory usage and a 25%enhancement in inference speed while only experiencing a 2.5%decrease in accuracy.It showcases its superiority over conventional detection algorithms in different road image scenarios.Although constrained by computer resources and training datasets,our results indicate opportunities for future research,demonstrating that quantization and focused optimization can significantly improve machine learning models’accuracy and operational efficiency.ARM Cortex-M0 gives practical feasibility and substantial benefits while deploying our optimized BNN model on this low-power device:Advanced machine learning in edge computing.The analysis work delves into the educational significance of TinyML and its essential function in analyzing road networks using remote sensing,suggesting ways to improve smart city frameworks in road network assessment,traffic management,and autonomous vehicle navigation systems by emphasizing the importance of new technologies for maintaining and safeguarding road networks.展开更多
A numerical study based on a two-dimensional two-phase SPH(Smoothed Particle Hydrodynamics)model to analyze the action of water waves on open-type sea access roads is presented.The study is a continuation of the analy...A numerical study based on a two-dimensional two-phase SPH(Smoothed Particle Hydrodynamics)model to analyze the action of water waves on open-type sea access roads is presented.The study is a continuation of the analyses presented by Chen et al.(2022),in which the sea access roads are semi-immersed.In this new configuration,the sea access roads are placed above the still water level,therefore the presence of the air phase becomes a relevant issue in the determination of the wave forces acting on the structures.Indeed,the comparison of wave forces on the open-type sea access roads obtained from the single and two-phase SPH models with the experimental results shows that the latter are in much better agreement.So in the numerical simulations,a two-phaseδ-SPH model is adopted to investigate the dynamical problems.Based on the numerical results,the maximum horizontal and uplifting wave forces acting on the sea access roads are analyzed by considering different wave conditions and geometries of the structures.In particular,the presence of the girder is analyzed and the differences in the wave forces due to the air cushion effects which are created below the structure are highlighted.展开更多
The post-earthquake emergency period,which is a sensitive time segment just after an event,mainly focuses on saving life and restoring social order.To improve the seismic resilience of city road networks,a resilience ...The post-earthquake emergency period,which is a sensitive time segment just after an event,mainly focuses on saving life and restoring social order.To improve the seismic resilience of city road networks,a resilience evaluation method used in the post-earthquake emergency period is proposed.The road seismic damage index of a city road network can consider the influence of roads,bridges and buildings along the roads,etc.on road capacity after an earthquake.A function index for a city road network is developed,which reflects the connectivity,redundancy,traffic demand and traffic function of the network.An optimization model for improving the road repair order in the post-earthquake emergency period is also developed according to the resilience evaluation,to enable decision support for city emergency management and achieve the best seismic resilience of the city road network.The optimization model is applied to a city road network and the results illustrate the feasibility of the resilience evaluation and optimization method for a city road network in the post-earthquake emergency period.展开更多
When existing deep learning models are used for road extraction tasks from high-resolution images,they are easily affected by noise factors such as tree and building occlusion and complex backgrounds,resulting in inco...When existing deep learning models are used for road extraction tasks from high-resolution images,they are easily affected by noise factors such as tree and building occlusion and complex backgrounds,resulting in incomplete road extraction and low accuracy.We propose the introduction of spatial and channel attention modules to the convolutional neural network ConvNeXt.Then,ConvNeXt is used as the backbone network,which cooperates with the perceptual analysis network UPerNet,retains the detection head of the semantic segmentation,and builds a new model ConvNeXt-UPerNet to suppress noise interference.Training on the open-source DeepGlobe and CHN6-CUG datasets and introducing the DiceLoss on the basis of CrossEntropyLoss solves the problem of positive and negative sample imbalance.Experimental results show that the new network model can achieve the following performance on the DeepGlobe dataset:79.40%for precision(Pre),97.93% for accuracy(Acc),69.28% for intersection over union(IoU),and 83.56% for mean intersection over union(MIoU).On the CHN6-CUG dataset,the model achieves the respective values of 78.17%for Pre,97.63%for Acc,65.4% for IoU,and 81.46% for MIoU.Compared with other network models,the fused ConvNeXt-UPerNet model can extract road information better when faced with the influence of noise contained in high-resolution remote sensing images.It also achieves multiscale image feature information with unified perception,ultimately improving the generalization ability of deep learning technology in extracting complex roads from high-resolution remote sensing images.展开更多
Significant advancements have been achieved in road surface extraction based on high-resolution remote sensingimage processing. Most current methods rely on fully supervised learning, which necessitates enormous human...Significant advancements have been achieved in road surface extraction based on high-resolution remote sensingimage processing. Most current methods rely on fully supervised learning, which necessitates enormous humaneffort to label the image. Within this field, other research endeavors utilize weakly supervised methods. Theseapproaches aim to reduce the expenses associated with annotation by leveraging sparsely annotated data, such asscribbles. This paper presents a novel technique called a weakly supervised network using scribble-supervised andedge-mask (WSSE-net). This network is a three-branch network architecture, whereby each branch is equippedwith a distinct decoder module dedicated to road extraction tasks. One of the branches is dedicated to generatingedge masks using edge detection algorithms and optimizing road edge details. The other two branches supervise themodel’s training by employing scribble labels and spreading scribble information throughout the image. To addressthe historical flaw that created pseudo-labels that are not updated with network training, we use mixup to blendprediction results dynamically and continually update new pseudo-labels to steer network training. Our solutiondemonstrates efficient operation by simultaneously considering both edge-mask aid and dynamic pseudo-labelsupport. The studies are conducted on three separate road datasets, which consist primarily of high-resolutionremote-sensing satellite photos and drone images. The experimental findings suggest that our methodologyperforms better than advanced scribble-supervised approaches and specific traditional fully supervised methods.展开更多
In this paper, platoons of autonomous vehicles operating in urban road networks are considered. From a methodological point of view, the problem of interest consists of formally characterizing vehicle state trajectory...In this paper, platoons of autonomous vehicles operating in urban road networks are considered. From a methodological point of view, the problem of interest consists of formally characterizing vehicle state trajectory tubes by means of routing decisions complying with traffic congestion criteria. To this end, a novel distributed control architecture is conceived by taking advantage of two methodologies: deep reinforcement learning and model predictive control. On one hand, the routing decisions are obtained by using a distributed reinforcement learning algorithm that exploits available traffic data at each road junction. On the other hand, a bank of model predictive controllers is in charge of computing the more adequate control action for each involved vehicle. Such tasks are here combined into a single framework:the deep reinforcement learning output(action) is translated into a set-point to be tracked by the model predictive controller;conversely, the current vehicle position, resulting from the application of the control move, is exploited by the deep reinforcement learning unit for improving its reliability. The main novelty of the proposed solution lies in its hybrid nature: on one hand it fully exploits deep reinforcement learning capabilities for decisionmaking purposes;on the other hand, time-varying hard constraints are always satisfied during the dynamical platoon evolution imposed by the computed routing decisions. To efficiently evaluate the performance of the proposed control architecture, a co-design procedure, involving the SUMO and MATLAB platforms, is implemented so that complex operating environments can be used, and the information coming from road maps(links,junctions, obstacles, semaphores, etc.) and vehicle state trajectories can be shared and exchanged. Finally by considering as operating scenario a real entire city block and a platoon of eleven vehicles described by double-integrator models, several simulations have been performed with the aim to put in light the main f eatures of the proposed approach. Moreover, it is important to underline that in different operating scenarios the proposed reinforcement learning scheme is capable of significantly reducing traffic congestion phenomena when compared with well-reputed competitors.展开更多
In this study,a human-sensitive frequency band vibration isolator(HFBVI)with quasi-zero stiffness(QZS)characteristics for heavy-duty truck seats is designed to improve the comfort of heavy-duty truck drivers on uneven...In this study,a human-sensitive frequency band vibration isolator(HFBVI)with quasi-zero stiffness(QZS)characteristics for heavy-duty truck seats is designed to improve the comfort of heavy-duty truck drivers on uneven roads.First,the analytical expressions for the force and displacement of the HFBVI are derived with the Lagrange equation and d'Alembert's principle,and are validated through the prototype restoring force testing.Second,the harmonic balance method(HBM)is used to obtain the dynamic responses under harmonic excitation,and further the influence of pre-stretching on the dynamic characteristics and transmissibility is discussed.Finally,the experimental prototype of the HFBVI is fabricated,and vibration experiments are conducted under harmonic excitation to verify the vibration isolation performance(VIP)of the proposed vibration isolator.The experimental results indicate that the HFBVI can effectively suppress the frequency band(4-8 Hz)to which the human body is sensitive to vertical vibration.In addition,under real random road spectrum excitation,the HFBVI can achieve low-frequency vibration isolation close to 2 Hz,providing new prospects for ensuring the health of heavy-duty truck drivers.展开更多
An experimental investigation into the thermal conductivity of CF-SiC two-phase composite asphalt concrete is presented.The main objective of this study was to verify the possibility of using SiC powder instead of min...An experimental investigation into the thermal conductivity of CF-SiC two-phase composite asphalt concrete is presented.The main objective of this study was to verify the possibility of using SiC powder instead of mineral powder as the thermal conductive filler to prepare a new type of asphalt concrete and improve the efficiency of electrothermal snow and ice melting systems accordingly.The thermal conductivity of asphalt concrete prepared with different thermally conductive fillers was tested by a transient plane source method,and the related performances were measured.Then the temperature rise rate and surface temperature were studied through field heating tests.Finally,the actual ice melting efficiency of the thermally conductive asphalt concrete was evaluated using an effective electrothermal system.As shown by the experimental results,the composite made of SiC powder and carbon fiber has a high thermal conductivity.When SiC replaces mineral powder,the thermal conductivity of the asphalt mixture increases first and then decreases with the increase of carbon fiber content.In the present study,in particular,the thermal conductivity attained a peak when the carbon fiber content was 0.2%of the aggregate mass.展开更多
Estimated ocean subsurface fields derived from satellite observations provide potential data sources for operational marine environmental monitoring and prediction systems.This study employs a statistic regression rec...Estimated ocean subsurface fields derived from satellite observations provide potential data sources for operational marine environmental monitoring and prediction systems.This study employs a statistic regression reconstruction method,in combination with domestic autonomous sea surface height and sea surface temperature observations from the Haiyang-2(HY-2)satellite fusion data,to establish an operational quasi-realtime three-dimensional(3D)temperature and salinity products over the Maritime Silk Road.These products feature a daily temporal resolution and a spatial resolution of 0.25°×0.25°and exhibit stability and continuity.We have demonstrated the accuracy of the reconstructed thermohaline fields in capturing the 3D thermohaline variations through comprehensive statistical evaluations,after comparing them against Argo observations and ocean analysis data from 2022.The results illustrate that the reconstructed fields effectively represent seasonal variations in oceanic subsurface structures,along with structural changes resulting from mesoscale processes,and the upper ocean’s responses to tropical cyclones.Furthermore,the incorporation of HY-2 satellite observations notably enhances the accuracy of temperature and salinity reconstructions in the Northwest Pacific Ocean and marginally improves salinity reconstruction accuracy in the North Indian Ocean when compared to the World Ocean Atlas 2018 monthly climatology thermohaline fields.As a result,the reconstructed product holds promise for providing quasi-real-time 3D temperature and salinity field information to facilitate fast decisionmaking during emergencies,and also offers foundational thermohaline fields for operational ocean reanalysis and forecasting systems.These contributions enhance the safety and stability of ocean subsurface activities and navigation.展开更多
基金the National Key Research and Development Program of China(2022YFE0137300)the National Natural Science Foundation of China(52078018)the German Research Foundation(SFB/TRR 339 and 453596084).
文摘Highway maintenance mileage reached 5.25 million kilometers in China by 2021.Ultra-thin overlay is one of the most commonly used maintenance technologies,which can significantly enhance the economic and environmental benefits of pavements.To promote the low-carbon development of ultrathin overlays,this paper mainly studied the mechanism and influencing factors of several ultra-thin overlay functions.Firstly,the skid resistance,noise reduction,rutting resistance,and crack resistance of ultrathin overlays were evaluated.The results indicated that the high-quality aggregates improved the skid and rutting resistance of ultra-thin overlay by 5%-20%.The optimized gradations and modified binders reduced noise of ultra-thin overlay by 0.4-6.0 dB.The high viscosity modified binders improved the rutting resistance of ultra-thin overlay by about 10%-130%.Basalt fiber improved the cracking resistance of ultra-thin overlay by more than 20%.Due to the thinner thickness and better road performance,the performance-based engineering cost of ultra-thin overlay was reduced by about 30%-40%compared with conventional overlays.Secondly,several environmentally friendly functions of ultra-thin overlay were investigated,including snow melting and deicing,exhaust gas purification and pavement cooling.The lower thickness of ultra-thin overlay was conducive to the diffusion of chloride-based materials to the pavement surface.Therefore,the snow melting effect of self-ice-melting was better.In addition,the ultra-thin overlay mixture containing photocatalytic materials could decompose 20%-50%of the exhaust gas.The colored ultra-thin overlay was able to reduce the temperature of the pavement by up to 8.1℃.The temperature difference between the upper and lower surfaces of the ultra-thin overlay containing thermal resistance materials could reach up to 12.8℃.In addition,numerous typical global engineering applications of functional ultra-thin overlay were summarized.This review can help better understand the functionality of ultra-thin overlays and promote the realization of future multi-functional and low-carbon road maintenance.
文摘The network of Himalayan roadways and highways connects some remote regions of valleys or hill slopes,which is vital for India’s socio-economic growth.Due to natural and artificial factors,frequency of slope instabilities along the networks has been increasing over last few decades.Assessment of stability of natural and artificial slopes due to construction of these connecting road networks is significant in safely executing these roads throughout the year.Several rock mass classification methods are generally used to assess the strength and deformability of rock mass.This study assesses slope stability along the NH-1A of Ramban district of North Western Himalayas.Various structurally and non-structurally controlled rock mass classification systems have been applied to assess the stability conditions of 14 slopes.For evaluating the stability of these slopes,kinematic analysis was performed along with geological strength index(GSI),rock mass rating(RMR),continuous slope mass rating(CoSMR),slope mass rating(SMR),and Q-slope in the present study.The SMR gives three slopes as completely unstable while CoSMR suggests four slopes as completely unstable.The stability of all slopes was also analyzed using a design chart under dynamic and static conditions by slope stability rating(SSR)for the factor of safety(FoS)of 1.2 and 1 respectively.Q-slope with probability of failure(PoF)1%gives two slopes as stable slopes.Stable slope angle has been determined based on the Q-slope safe angle equation and SSR design chart based on the FoS.The value ranges given by different empirical classifications were RMR(37-74),GSI(27.3-58.5),SMR(11-59),and CoSMR(3.39-74.56).Good relationship was found among RMR&SSR and RMR&GSI with correlation coefficient(R 2)value of 0.815 and 0.6866,respectively.Lastly,a comparative stability of all these slopes based on the above classification has been performed to identify the most critical slope along this road.
基金the financial support from the National Natural Science Foundation of China(71934004)Key Projects of the National Social Science Foundation(23AZD065)the Project of the CNOOC Energy Economics Institute(EEI-2022-IESA0009)。
文摘With the implementation of the Belt and Road Initiative, China is deepening its cooperation in oil and gas resources with countries along the Initiative. In order to better mitigate risks and enhance the safety of investments, it is of significant importance to research the oil and gas investment environment in these countries for China's overseas investment macro-layout. This paper proposes an indicator system including 27 indicators from 6 dimensions. On this basis, game theory models combined with global entropy method and analytic hierarchy process are applied to determine the combined weights, and the TOPSIS-GRA model is utilized to assess the risks of oil and gas investment in 76 countries along the Initiative from 2014 to 2021. Finally, the GM(1,1) model is employed to predict risk values for 2022-2025. In conclusion, oil and gas resources and political factors have the greatest impact on investment environment risk, and 12 countries with greater investment potential are selected through cluster analysis in conjunction with the predicted results. The research findings may provide scientific decisionmaking recommendations for the Chinese government and oil enterprises to strengthen oil and gas investment cooperation with countries along the Belt and Road Initiative.
文摘Ancient Yunnan was one of the most significant regions along China’s ancient“Southern Silk Road.”During the Nanzhao period(738–902)of the late Tang Dynasty,Yunnan’s silk-weaving industry underwent a qualitative leap as skilled silk craftsmen from the Bashu area migrated to Yunnan and introduced mulberry planting,silkworm breeding,and advanced silk-weaving techniques from Sichuan to the region.Consequently,people in Yunnan gradually acquired expertise in brocade weaving and embroidery.Many even mastered complex silk-weaving techniques.The development and progress of the silk-weaving industry in the ancient Yunnan region were intricately linked to the economic function and value of silk as both a commodity and currency along the“Southern Silk Road.”The local government in ancient Yunnan was greatly motivated by the economic interests brought by the development of silk-related industries and recognized the significance of developing the local silk industry.They even initiated a campaign to capture skilled silk craftsmen from Sichuan,aiming to foster the growth of the silk-weaving industry in Yunnan.After years of dedicated efforts from the local government in ancient Yunnan,the region emerged as a significant hub for silk production along China’s ancient“Southern Silk Road.”Despite the devastation caused by the wars in other parts of the country,Yunnan’s silk industry continued to thrive and provide ample silk products to sustain trade along this renowned route.In the contemporary era,amidst the decline of the silk-weaving industry in eastern China,Yunnan has proposed an industrial development strategy known as“relocating the silk-weaving industry from east to west.”This involves introducing advanced silk production techniques from the eastern regions into Yunnan to enhance and enrich its local silk industry,thereby establishing it as a traditional national sector and securing a competitive position within the global silk market.The historical experience of Yunnan’s silk industry demonstrated that economic development opportunities can only be seized through proactive endeavors rather than passive anticipation.The modern Yunnan silk industry,which upholds its historical traditions,continues to actively engage in international high-end technical cooperation,thus ensuring the enduring vitality of the ancient“Southern Silk Road.”
基金the National Natural Science Foundation of China(Nos.62272063,62072056 and 61902041)the Natural Science Foundation of Hunan Province(Nos.2022JJ30617 and 2020JJ2029)+4 种基金Open Research Fund of Key Lab of Broadband Wireless Communication and Sensor Network Technology,Nanjing University of Posts and Telecommunications(No.JZNY202102)the Traffic Science and Technology Project of Hunan Province,China(No.202042)Hunan Provincial Key Research and Development Program(No.2022GK2019)this work was funded by the Researchers Supporting Project Number(RSPD2023R681)King Saud University,Riyadh,Saudi Arabia.
文摘Internet of Vehicles (IoV) is a new system that enables individual vehicles to connect with nearby vehicles,people, transportation infrastructure, and networks, thereby realizing amore intelligent and efficient transportationsystem. The movement of vehicles and the three-dimensional (3D) nature of the road network cause the topologicalstructure of IoV to have the high space and time complexity.Network modeling and structure recognition for 3Droads can benefit the description of topological changes for IoV. This paper proposes a 3Dgeneral roadmodel basedon discrete points of roads obtained from GIS. First, the constraints imposed by 3D roads on moving vehicles areanalyzed. Then the effects of road curvature radius (Ra), longitudinal slope (Slo), and length (Len) on speed andacceleration are studied. Finally, a general 3D road network model based on road section features is established.This paper also presents intersection and road section recognition methods based on the structural features ofthe 3D road network model and the road features. Real GIS data from a specific region of Beijing is adopted tocreate the simulation scenario, and the simulation results validate the general 3D road network model and therecognitionmethod. Therefore, thiswork makes contributions to the field of intelligent transportation by providinga comprehensive approach tomodeling the 3Droad network and its topological changes in achieving efficient trafficflowand improved road safety.
基金Funded by the National Natural Science Foundation of China(No.52008069)。
文摘Modifying agents 2,2-Bis(4-glycidyloxyphenyl)propane(2BPE)and dibutyl phthalate(DBP)were selected to enhance the compatibility.By using molecular simulation software(Materials Studio,MS),nine systems were constructed,including molecular models of aged asphalt and WVO monomers with 2BPE and/or DBP.The solubility parameters,Flory-Huggins parameters,and interaction energies of these systems were calculated to determine the impact of 2BPE and DBP on the compatibility of WVO and aged asphalt.Results showed that the addition of 2BPE and DBP reduced the difference in the solubility parameters between WVO and aged asphalt,thus improving the compatibility between WVO and aged asphalt.Additionally,using a combination of 2BPE and DBP in both aged asphalt and rejuvenator was found to be more effective than using either 2BPE or DBP alone.Finally,it was determined that evaluating the compatibility of WVO and aged asphalt using Van der Waals potential and non-bonding energy as evaluation indicators was more accurate than using electrostatic potential energy.
文摘The latticed dunes in the Tengger Desert are widely distributed,and the sand-blocking fence placed here are highly susceptible to local failure due to complex wind-sand activities,posing a serious threat to the safe operation of the highway.To explore the local failure mechanism of sand-blocking fence in the latticed dune area,the local failure of sand-blocking fence in the latticed dune areas along the Wuhai-Maqin Highway in China was observed.Taking the first main ridge of the latticed dune as the placement location,the structure of the wind-sand flow field of sand-blocking fence placed at top,the bottom and the middle of windward slope was analyzed by Computational Fluid Dynamics(CFD).The results show that when placed at top of the first main ridge,the wind speed near the sand-blocking fence is the highest,up to 15.23 m/s.Therefore,the wind load strength on the sand barrier is correspondingly larger,up to 232.61 N∙m-2.As the strength of material continues to decrease,the nylon net is prone to breakage.The roots of the angle steel posts are susceptible to hollowing by vortex action,which can cause sand-blocking fence to fall over in strong wind conditions.When placed at the bottom of windward slope,wind speed drop near sand-blocking fence is greatest,with the decrease of 12.48-14.32 m/s compared to the original wind speed.This is highly likely to lead to large-scale deposition of sand particles and burial of the sand-blocking fence.When placed in the middle of windward slope,sand-blocking fence is subjected to less wind load strength(168.61N∙m-2)and sand particles are mostly deposited at the bottom of windward slope,with only a small amount of sand accumulating at the root of sand-blocking fence.Based on field observations and numerical modelling results,when the sand-blocking fence is placed in latticed dune area,it should be placed in the middle of the windward slope of the first main ridge as a matter of priority.Besides the sand-blocking fence should be placed at the top of the first main ridge,and sand fixing measures should be added.
基金the National Natural Science Foundation of China(Grant Numbers 52072157,52002156,52202471)Natural Science Foundation of Jiangsu Province(Grant Number BK20200911)+2 种基金Chongqing Key Laboratory of Urban Rail Transit System Integration and Control Open Fund(Grant Number CKLURVIOM_KFKT_2023001)Jiangsu Funding Program for Excellent Postdoctoral Talent(Grant Number 2022ZB659)State Key Laboratory of Advanced Design and Manufacturing Technology for Vehicle,Hunan University(Grant Number 82315004).
文摘This paper addresses the impact of vertical vibration negative effects,unbalanced radial forces generated by the static eccentricity of the hub motor,and road excitation on the suspension performance of Hub Motor Driven Vehicle(HMDV).A dynamic inertial suspension based on Active Disturbance Rejection Control(ADRC)is proposed,combining the vertical dynamic characteristics of dynamic inertial suspension with the features of ADRC,which distinguishes between internal and external disturbances and arranges the transition process.Firstly,a simulation model of the static eccentricity of the hub motor is established to simulate the unbalanced radial electromagnetic force generated under static eccentricity.A quarter-vehicle model of an HMDV with a controllable dynamic inertial suspension is then constructed.Subsequently,the passive suspension model is studied under different grades of road excitation,and the impact mechanism of suspension performance at speeds of 0–20 m/s is analyzed.Next,the three main components within the ADRC controller are designed for the second-order controlled system,and optimization algorithms are used to optimize its internal parameters.Finally,the performance of the traditional passive suspension,the PID-based controllable dynamic inertial suspension,and the ADRC-based controllable dynamic inertial suspension are analyzed under different road inputs.Simulation results show that,under sinusoidal road input,the ADRC-based controllable dynamic inertial suspension exhibits a 52.3%reduction in the low-frequency resonance peak in the vehicle body acceleration gain diagram compared to the traditional passive suspension,with significant performance optimization in the high-frequency range.Under random road input,the ADRC-based controllable dynamic inertial suspension achieves a 29.53%reduction in the root mean square value of vehicle body acceleration and a 14.87%reduction in dynamic tire load.This indicates that the designed controllable dynamic inertial suspension possesses excellent vibration isolation performance.
基金Supported by National Natural Science Foundation of China (Grant No.11672127)Innovative Science and Technology Platform Project of Cooperation between Yangzhou City and Yangzhou University of China (Grant No.YZ2020266)+3 种基金Advance Research Special Technology Project of Army Equipment of China (Grant No.AGA19001)Innovation Fund Project of China Aerospace 1st Academy (Grant No.CHC20001)Fundamental Research Funds for the Central Universities of China (Grant No.NP2022408)Jiangsu Provincial Postgraduate Research&Practice Innovation Program of China (Grant No.SJCX23_1903)。
文摘Enhancing ride comfort has always constituted a crucial focus in the design and research of modern tracked vehicles,heavily reliant on the driving system's performance.While the road wheel is a key component of the driving system,traditional road wheels predominantly adopt a solid structure,exhibiting subpar adhesion performance and damping effects,thereby falling short of meeting the demands for high-speed,stable,and long-distance driving in tracked vehicles.Addressing this issue,this paper proposes a novel type of flexible road wheel(FRW)characterized by a catenary construction.The study investigates the ride comfort of tracked vehicles equipped with flexible road wheels by integrating finite element and vehicle dynamic.First,three-dimensional(3D)finite element(FE)models of both flexible and rigid road wheels are established,considering material and contact nonlinearities.These models are validated through a wheel radial loading test.Based on the validated FE model,the paper uncovers the relationship between load and radial deformation of the road wheel,forming the basis for a nonlinear mathematical model.Subsequently,a half-car model of a tracked vehicle with seven degrees of freedom is established using Newton's second law.A random road model,considering the track effect and employing white noise,is constructed.The study concludes by examining the ride comfort of tracked vehicles equipped with flexible and rigid road wheels under various speeds and road grades.The results demonstrate that,in comparison to the rigid road wheel(RRW),the flexible road wheel enhances the ride comfort of tracked vehicles on randomly uneven roads.This research provides a theoretical foundation for the implementation of flexible road wheels in tracked vehicles.
基金Supported by National Natural Science Foundation of China(Grant Nos.62261160575,61991414,61973036)Technical Field Foundation of the National Defense Science and Technology 173 Program of China(Grant Nos.20220601053,20220601030)。
文摘There is no unified planning standard for unstructured roads,and the morphological structures of these roads are complex and varied.It is important to maintain a balance between accuracy and speed for unstructured road extraction models.Unstructured road extraction algorithms based on deep learning have problems such as high model complexity,high computational cost,and the inability to adapt to current edge computing devices.Therefore,it is best to use lightweight network models.Considering the need for lightweight models and the characteristics of unstructured roads with different pattern shapes,such as blocks and strips,a TMB(Triple Multi-Block)feature extraction module is proposed,and the overall structure of the TMBNet network is described.The TMB module was compared with SS-nbt,Non-bottleneck-1D,and other modules via experiments.The feasibility and effectiveness of the TMB module design were proven through experiments and visualizations.The comparison experiment,using multiple convolution kernel categories,proved that the TMB module can improve the segmentation accuracy of the network.The comparison with different semantic segmentation networks demonstrates that the TMBNet network has advantages in terms of unstructured road extraction.
基金supported by the National Natural Science Foundation of China(61170147)Scientific Research Project of Zhejiang Provincial Department of Education in China(Y202146796)+2 种基金Natural Science Foundation of Zhejiang Province in China(LTY22F020003)Wenzhou Major Scientific and Technological Innovation Project of China(ZG2021029)Scientific and Technological Projects of Henan Province in China(202102210172).
文摘Integrating Tiny Machine Learning(TinyML)with edge computing in remotely sensed images enhances the capabilities of road anomaly detection on a broader level.Constrained devices efficiently implement a Binary Neural Network(BNN)for road feature extraction,utilizing quantization and compression through a pruning strategy.The modifications resulted in a 28-fold decrease in memory usage and a 25%enhancement in inference speed while only experiencing a 2.5%decrease in accuracy.It showcases its superiority over conventional detection algorithms in different road image scenarios.Although constrained by computer resources and training datasets,our results indicate opportunities for future research,demonstrating that quantization and focused optimization can significantly improve machine learning models’accuracy and operational efficiency.ARM Cortex-M0 gives practical feasibility and substantial benefits while deploying our optimized BNN model on this low-power device:Advanced machine learning in edge computing.The analysis work delves into the educational significance of TinyML and its essential function in analyzing road networks using remote sensing,suggesting ways to improve smart city frameworks in road network assessment,traffic management,and autonomous vehicle navigation systems by emphasizing the importance of new technologies for maintaining and safeguarding road networks.
基金supported by the New Cornerstone Science Foundation through the XPLORER PRIZE and the National Natural Science Foundation of China(Grant No.52088102).
文摘A numerical study based on a two-dimensional two-phase SPH(Smoothed Particle Hydrodynamics)model to analyze the action of water waves on open-type sea access roads is presented.The study is a continuation of the analyses presented by Chen et al.(2022),in which the sea access roads are semi-immersed.In this new configuration,the sea access roads are placed above the still water level,therefore the presence of the air phase becomes a relevant issue in the determination of the wave forces acting on the structures.Indeed,the comparison of wave forces on the open-type sea access roads obtained from the single and two-phase SPH models with the experimental results shows that the latter are in much better agreement.So in the numerical simulations,a two-phaseδ-SPH model is adopted to investigate the dynamical problems.Based on the numerical results,the maximum horizontal and uplifting wave forces acting on the sea access roads are analyzed by considering different wave conditions and geometries of the structures.In particular,the presence of the girder is analyzed and the differences in the wave forces due to the air cushion effects which are created below the structure are highlighted.
基金National Natural Science Foundation of China under Grant Nos.U1939210 and 51825801。
文摘The post-earthquake emergency period,which is a sensitive time segment just after an event,mainly focuses on saving life and restoring social order.To improve the seismic resilience of city road networks,a resilience evaluation method used in the post-earthquake emergency period is proposed.The road seismic damage index of a city road network can consider the influence of roads,bridges and buildings along the roads,etc.on road capacity after an earthquake.A function index for a city road network is developed,which reflects the connectivity,redundancy,traffic demand and traffic function of the network.An optimization model for improving the road repair order in the post-earthquake emergency period is also developed according to the resilience evaluation,to enable decision support for city emergency management and achieve the best seismic resilience of the city road network.The optimization model is applied to a city road network and the results illustrate the feasibility of the resilience evaluation and optimization method for a city road network in the post-earthquake emergency period.
基金This work was supported in part by the Key Project of Natural Science Research of Anhui Provincial Department of Education under Grant KJ2017A416in part by the Fund of National Sensor Network Engineering Technology Research Center(No.NSNC202103).
文摘When existing deep learning models are used for road extraction tasks from high-resolution images,they are easily affected by noise factors such as tree and building occlusion and complex backgrounds,resulting in incomplete road extraction and low accuracy.We propose the introduction of spatial and channel attention modules to the convolutional neural network ConvNeXt.Then,ConvNeXt is used as the backbone network,which cooperates with the perceptual analysis network UPerNet,retains the detection head of the semantic segmentation,and builds a new model ConvNeXt-UPerNet to suppress noise interference.Training on the open-source DeepGlobe and CHN6-CUG datasets and introducing the DiceLoss on the basis of CrossEntropyLoss solves the problem of positive and negative sample imbalance.Experimental results show that the new network model can achieve the following performance on the DeepGlobe dataset:79.40%for precision(Pre),97.93% for accuracy(Acc),69.28% for intersection over union(IoU),and 83.56% for mean intersection over union(MIoU).On the CHN6-CUG dataset,the model achieves the respective values of 78.17%for Pre,97.63%for Acc,65.4% for IoU,and 81.46% for MIoU.Compared with other network models,the fused ConvNeXt-UPerNet model can extract road information better when faced with the influence of noise contained in high-resolution remote sensing images.It also achieves multiscale image feature information with unified perception,ultimately improving the generalization ability of deep learning technology in extracting complex roads from high-resolution remote sensing images.
基金the National Natural Science Foundation of China(42001408,61806097).
文摘Significant advancements have been achieved in road surface extraction based on high-resolution remote sensingimage processing. Most current methods rely on fully supervised learning, which necessitates enormous humaneffort to label the image. Within this field, other research endeavors utilize weakly supervised methods. Theseapproaches aim to reduce the expenses associated with annotation by leveraging sparsely annotated data, such asscribbles. This paper presents a novel technique called a weakly supervised network using scribble-supervised andedge-mask (WSSE-net). This network is a three-branch network architecture, whereby each branch is equippedwith a distinct decoder module dedicated to road extraction tasks. One of the branches is dedicated to generatingedge masks using edge detection algorithms and optimizing road edge details. The other two branches supervise themodel’s training by employing scribble labels and spreading scribble information throughout the image. To addressthe historical flaw that created pseudo-labels that are not updated with network training, we use mixup to blendprediction results dynamically and continually update new pseudo-labels to steer network training. Our solutiondemonstrates efficient operation by simultaneously considering both edge-mask aid and dynamic pseudo-labelsupport. The studies are conducted on three separate road datasets, which consist primarily of high-resolutionremote-sensing satellite photos and drone images. The experimental findings suggest that our methodologyperforms better than advanced scribble-supervised approaches and specific traditional fully supervised methods.
文摘In this paper, platoons of autonomous vehicles operating in urban road networks are considered. From a methodological point of view, the problem of interest consists of formally characterizing vehicle state trajectory tubes by means of routing decisions complying with traffic congestion criteria. To this end, a novel distributed control architecture is conceived by taking advantage of two methodologies: deep reinforcement learning and model predictive control. On one hand, the routing decisions are obtained by using a distributed reinforcement learning algorithm that exploits available traffic data at each road junction. On the other hand, a bank of model predictive controllers is in charge of computing the more adequate control action for each involved vehicle. Such tasks are here combined into a single framework:the deep reinforcement learning output(action) is translated into a set-point to be tracked by the model predictive controller;conversely, the current vehicle position, resulting from the application of the control move, is exploited by the deep reinforcement learning unit for improving its reliability. The main novelty of the proposed solution lies in its hybrid nature: on one hand it fully exploits deep reinforcement learning capabilities for decisionmaking purposes;on the other hand, time-varying hard constraints are always satisfied during the dynamical platoon evolution imposed by the computed routing decisions. To efficiently evaluate the performance of the proposed control architecture, a co-design procedure, involving the SUMO and MATLAB platforms, is implemented so that complex operating environments can be used, and the information coming from road maps(links,junctions, obstacles, semaphores, etc.) and vehicle state trajectories can be shared and exchanged. Finally by considering as operating scenario a real entire city block and a platoon of eleven vehicles described by double-integrator models, several simulations have been performed with the aim to put in light the main f eatures of the proposed approach. Moreover, it is important to underline that in different operating scenarios the proposed reinforcement learning scheme is capable of significantly reducing traffic congestion phenomena when compared with well-reputed competitors.
基金supported by the National Natural Science Foundation of China(No.12172226)。
文摘In this study,a human-sensitive frequency band vibration isolator(HFBVI)with quasi-zero stiffness(QZS)characteristics for heavy-duty truck seats is designed to improve the comfort of heavy-duty truck drivers on uneven roads.First,the analytical expressions for the force and displacement of the HFBVI are derived with the Lagrange equation and d'Alembert's principle,and are validated through the prototype restoring force testing.Second,the harmonic balance method(HBM)is used to obtain the dynamic responses under harmonic excitation,and further the influence of pre-stretching on the dynamic characteristics and transmissibility is discussed.Finally,the experimental prototype of the HFBVI is fabricated,and vibration experiments are conducted under harmonic excitation to verify the vibration isolation performance(VIP)of the proposed vibration isolator.The experimental results indicate that the HFBVI can effectively suppress the frequency band(4-8 Hz)to which the human body is sensitive to vertical vibration.In addition,under real random road spectrum excitation,the HFBVI can achieve low-frequency vibration isolation close to 2 Hz,providing new prospects for ensuring the health of heavy-duty truck drivers.
基金the support of the Joint Funds of the Natural Science Foundation of Hubei Province(2022CFD130)the Technology Innovation Project of Hubei Province(Key Program,No.2023BEB010)+1 种基金the Key Research and Development Program of Hubei Province(No.2021BGD015)the Knowledge Innovation Project of Wuhan(No.2022010801010259).
文摘An experimental investigation into the thermal conductivity of CF-SiC two-phase composite asphalt concrete is presented.The main objective of this study was to verify the possibility of using SiC powder instead of mineral powder as the thermal conductive filler to prepare a new type of asphalt concrete and improve the efficiency of electrothermal snow and ice melting systems accordingly.The thermal conductivity of asphalt concrete prepared with different thermally conductive fillers was tested by a transient plane source method,and the related performances were measured.Then the temperature rise rate and surface temperature were studied through field heating tests.Finally,the actual ice melting efficiency of the thermally conductive asphalt concrete was evaluated using an effective electrothermal system.As shown by the experimental results,the composite made of SiC powder and carbon fiber has a high thermal conductivity.When SiC replaces mineral powder,the thermal conductivity of the asphalt mixture increases first and then decreases with the increase of carbon fiber content.In the present study,in particular,the thermal conductivity attained a peak when the carbon fiber content was 0.2%of the aggregate mass.
基金The China-ASEAN Marine Cooperation Foundationthe Fundamental Research Funds for the Central Universities under contract No.B210203041+1 种基金the Postgraduate Research&Practice Innovation Program of Jiangsu Province under contract No.KYCX23_0657the opening project of the Key Laboratory of Marine Environmental Information Technology of Ministry of Natural Resources under contract No.521037412.
文摘Estimated ocean subsurface fields derived from satellite observations provide potential data sources for operational marine environmental monitoring and prediction systems.This study employs a statistic regression reconstruction method,in combination with domestic autonomous sea surface height and sea surface temperature observations from the Haiyang-2(HY-2)satellite fusion data,to establish an operational quasi-realtime three-dimensional(3D)temperature and salinity products over the Maritime Silk Road.These products feature a daily temporal resolution and a spatial resolution of 0.25°×0.25°and exhibit stability and continuity.We have demonstrated the accuracy of the reconstructed thermohaline fields in capturing the 3D thermohaline variations through comprehensive statistical evaluations,after comparing them against Argo observations and ocean analysis data from 2022.The results illustrate that the reconstructed fields effectively represent seasonal variations in oceanic subsurface structures,along with structural changes resulting from mesoscale processes,and the upper ocean’s responses to tropical cyclones.Furthermore,the incorporation of HY-2 satellite observations notably enhances the accuracy of temperature and salinity reconstructions in the Northwest Pacific Ocean and marginally improves salinity reconstruction accuracy in the North Indian Ocean when compared to the World Ocean Atlas 2018 monthly climatology thermohaline fields.As a result,the reconstructed product holds promise for providing quasi-real-time 3D temperature and salinity field information to facilitate fast decisionmaking during emergencies,and also offers foundational thermohaline fields for operational ocean reanalysis and forecasting systems.These contributions enhance the safety and stability of ocean subsurface activities and navigation.