Currently, numerical simulations of seismic channel waves for the advance detection of geological structures in coal mine roadways focus mainly on modeling two- dimensional wave fields and therefore cannot accurately ...Currently, numerical simulations of seismic channel waves for the advance detection of geological structures in coal mine roadways focus mainly on modeling two- dimensional wave fields and therefore cannot accurately simulate three-dimensional (3-D) full-wave fields or seismic records in a full-space observation system. In this study, we use the first-order velocity-stress staggered-grid finite difference algorithm to simulate 3-D full-wave fields with P-wave sources in front of coal mine roadways. We determine the three components of velocity Vx, Vy, and Vz for the same node in 3-D staggered-grid finite difference models by calculating the average value of Vy, and Vz of the nodes around the same node. We ascertain the wave patterns and their propagation characteristics in both symmetrical and asymmetric coal mine roadway models. Our simulation results indicate that the Rayleigh channel wave is stronger than the Love channel wave in front of the roadway face. The reflected Rayleigh waves from the roadway face are concentrated in the coal seam, release less energy to the roof and floor, and propagate for a longer distance. There are surface waves and refraction head waves around the roadway. In the seismic records, the Rayleigh wave energy is stronger than that of the Love channel wave along coal walls of the roadway, and the interference of the head waves and surface waves with the Rayleigh channel wave is weaker than with the Love channel wave. It is thus difficult to identify the Love channel wave in the seismic records. Increasing the depth of the receivers in the coal walls can effectively weaken the interference of surface waves with the Rayleigh channel wave, but cannot weaken the interference of surface waves with the Love channel wave. Our research results also suggest that the Love channel wave, which is often used to detect geological structures in coal mine stopes, is not suitable for detecting geological structures in front of coal mine roadways. Instead, the Rayleigh channel wave can be used for the advance detection of geological structures in coal mine roadways.展开更多
Failure of the surrounding rock around a roadway induced by roof separation is one major type of underground roof-fall accidents.This failure can especially be commonly-seen in a bottom-driven roadway within an extra-...Failure of the surrounding rock around a roadway induced by roof separation is one major type of underground roof-fall accidents.This failure can especially be commonly-seen in a bottom-driven roadway within an extra-thick coal seam("bottom-driven roadway"is used throughout for ease of reference),containing weak partings in their roof coal seams.To determine the upper limit position of the roof interlayer separation is the primary premise for roof control.In this study,a mechanical model for predicting the interlayer separation overlying a bottom-driven roadway within an extra-thick coal seam was established and used to deduce the vertical stress,and length,of the elastic,and plastic zones in the rock strata above the wall of the roadway as well as the formulae for calculating the deflection in different regions of rock strata under bearing stress.Also,an approach was proposed,calculating the stratum load,deflection,and limiting span of the upper limit position of the interlayer separation in a thick coal seam.Based on the key strata control theory and its influence of bedding separation,a set of methods judging the upper limit position of the roof interlayer separation were constructed.In addition,the theoretical prediction and field monitoring for the upper limit position of interlayer separation were conducted in a typical roadway.The results obtained by these two methods are consistent,indicating that the methods proposed are conducive to improving roof control in a thick coal seam.展开更多
In order to study the mechanism of bolt support and the behavior of strata in a coal roadway under tectonic stress,deformation and destruction of a roof,floor and sides were studied using an experiment in similarity s...In order to study the mechanism of bolt support and the behavior of strata in a coal roadway under tectonic stress,deformation and destruction of a roof,floor and sides were studied using an experiment in similarity simulation.We also studied the mechanism and types of bolt support functions in the coal roadway.The results show that with an increase in horizontal tectonic stress,the strata in the roof and floor of the roadway gradually separate and become shear failure areas.Coal in side walls moves,but its integrity remains intact.Side bolts are mainly affected by tension and roof bolts by the effect of shear.展开更多
In order to effectively control the deformation and failure of surrounding rocks in a coal roadway in a deep tectonic region, the deformation and failure mechanism and stability control mechanism were studied. With su...In order to effectively control the deformation and failure of surrounding rocks in a coal roadway in a deep tectonic region, the deformation and failure mechanism and stability control mechanism were studied. With such methods as numerical simulation and field testing, the distribution law of the displacement, stress and plastic zone in the surrounding rocks was analyzed. The deformation and failure mechanisms of coal roadways in deep tectonic areas were revealed: under high tectonic stress, two sides will slide along the roof or floor; while the plastic zone of the two sides will extend along the roof or floor,leading to more serious deformation and failure in the corner of two sides and the bolt supporting the corners is readily cut off by the shear force or tension force. Aimed at controlling the large slippage deformation of the two sides, serious deformation and failure in the corners of the two sides and massive bolt breakage, a ‘‘controlling and yielding coupling support'' control technology is proposed. Firstly, bolts which do not pass through the bedding plane should be used in the corners of the roadway, allowing the two sides to have some degree of sliding to achieve the purpose of ‘‘yielding'' support, and which avoid breakage of the bolts in the corner. After yielding support, bolts in the corner of the roadway and which pass through the bedding plane should be used to control the deformation and failure of the coal in the corner. ‘‘Controlling and yielding coupling support'' technology has been successfully applied in engineering practice, and the stability of deep coal roadway has been greatly improved.展开更多
Based on the features of the serious deformation of coal roadway,many random variables of the mechanics of the surrounding rocks and the influence of mining, the reliability analysis model of the support structure of ...Based on the features of the serious deformation of coal roadway,many random variables of the mechanics of the surrounding rocks and the influence of mining, the reliability analysis model of the support structure of coal roadway under the influence of mining is established,and the calculating formulas of reliability of the support structure is obtained with the engineering structure reliability theory. And the reliability is calculated based on the method of Monte Carlo to the coal roadway which is exampled on the influence of mining or not. The relationship between support parameters and reliability, the mining influence coefficients and reliability is established, which provides theory foundations for the design of the coal roadway bolt support.展开更多
Aiming at the surrounding rock control problem of mining and preparation entries in Xingdong mine with large mining depth, and the comprehensive control countermeasures including high pre-stress cable truss system, th...Aiming at the surrounding rock control problem of mining and preparation entries in Xingdong mine with large mining depth, and the comprehensive control countermeasures including high pre-stress cable truss system, this study put forward powerful anchor support system and anchor cable adaption technology to surrounding rock deformation. Furthermore, the control measures possess the supporting performance with ‘‘primary rigid-following flexible-new rigid, and primary resistance-following yield-new resistance'', which suits deep roadway surrounding rock control. The mechanical model of truss anchor supporting roof beams was established, and the inverted arch deflection produced by the cable pre-stress with stress increment effect and roof beam deflection were obtained. And then the system working mechanism was illustrated. Finally, the surrounding rock support parameters were determined by means of comprehensive methods, and put into practice. The results show that surrounding rock deformation realized secondary stability after three months. The roadway sides convergence value was less than 245mm, and roof subsidence was less than 124mm. In addition, there was no expansion and renovation during service period.展开更多
The influence of an upper,mined coal seam on the stability of rock surrounding a roadway in a lower coal seam is examined.The technical problems of roadway control are discussed based on the geological conditions exis...The influence of an upper,mined coal seam on the stability of rock surrounding a roadway in a lower coal seam is examined.The technical problems of roadway control are discussed based on the geological conditions existing in the Liyazhuang Mine No.2 coal seam.The stress distribution and floor failure in the lower works after mining the upper coal is studied through numerical simulations.The failure mechanism of the roof and walls of a roadway located in the lower coal seam is described.The predicted deformation and failure of the roadway for different distances between the two coal seams are used to design two ways of supporting the lower structure.One is a combined support consisting of anchors with a joist steel tent and a combined anchor truss.A field test of the design was performed to good effect.The results have significance for the design of supports for roadways located in similar conditions.展开更多
Automatic roadway formation by roof cutting is a sustainable nonpillar mining method that has the potential to increase coal recovery,reduce roadway excavation and improve mining safety.In this method,roof cutting is ...Automatic roadway formation by roof cutting is a sustainable nonpillar mining method that has the potential to increase coal recovery,reduce roadway excavation and improve mining safety.In this method,roof cutting is the key process for stress relief,which significantly affects the stability of the formed roadway.This paper presents a directionally single cracking(DSC)technique for roof cutting with considerations of rock properties.The mechanism of the DSC technique was investi-gated by explicit finite element analyses.The DSC technique and roof cutting parameters were evaluated by discrete element simulation and field experiment.On this basis,the optimized DSC technique was tested in the field.The results indicate that the DSC technique could effectively control the blast-induced stress distribution and crack propagation in the roof rock,thus,achieve directionally single cracking on the roadway roof.The DsC technique for roof cutting with optimized parameters could effectively reduce the deformation and improve the stability of the formed roadway.Field engineering application verified the feasibility and effectiveness of the evaluated DSC technique for roof cutting.展开更多
According to the research results in world, the paper comprehensively analyzed and gave a demonstration of mechanism of single-truss and its stressing advantage. Comparison and analysis effect were given to single-tru...According to the research results in world, the paper comprehensively analyzed and gave a demonstration of mechanism of single-truss and its stressing advantage. Comparison and analysis effect were given to single-truss and bolting supporting. By the way of element simulation. The paper shows that single truss supporting have better effect to bolting supporting to improving the stress condition of surrounding rocks, controlling the surrounding rocks plastic failure development zone and deformation effect of surrounding rocks, which provided the elementary theory basis to the research, experiment and expanding the single-truss bolting technology in colliery.展开更多
An active measurement method and its principle was introduced consideringthe low success rate,special difficulty,and long measurement time of the direct gas pressuremeasurement currently used in coal roadways.The tech...An active measurement method and its principle was introduced consideringthe low success rate,special difficulty,and long measurement time of the direct gas pressuremeasurement currently used in coal roadways.The technology of drilling,boreholesealing depth,borehole sealing length,sealing control of the measuring process,compensatorycomputation of gas loss quantity and other key techniques were discussed.Finally,based on the latest instrument the authors developed,a series of experiments of directgas pressure measurement in the coal roadways of the Jincheng and Tongchuanmine district,were carried out.The experimental results show that active gas pressuremeasurement technique has advantages as follows:(1) the application scope of direct gaspressure measurement technique is wide and it does not have the restriction of coalhardness,coal seam fissure and other conditions;(2) the measured results are credible,which can be tested by the same gas pressure value acquired from a different borehole inthe same place;(3) the measurement process is convenient and quick,it takes about 2 to3 days to acquire the gas pressure value in a coal seam.展开更多
The mechanical principle and surrounding rock deformation feature of highstress coal roadway was analyzed.The condition of stress balance of the kind of theroadway was put forward.The surrounding rock control principl...The mechanical principle and surrounding rock deformation feature of highstress coal roadway was analyzed.The condition of stress balance of the kind of theroadway was put forward.The surrounding rock control principle and supporting techniqueof high stress coal roadway were discussed.It was very important to control early daysdeformation of coal sides.The supporting strength is should increased,so the strengthloss of coal sides is decreased.The range of plastic fluid zone is reduced.The abovemention-ned principle is applied in industrial test,and the new supporting technique is ap-plied successfully.展开更多
According to the rock burst features occurred in the coal mass of roadway rib in one mine,the mechanics model of coal mass and roof structure system along the edge of goaf was founded to analyze the stress of roof roc...According to the rock burst features occurred in the coal mass of roadway rib in one mine,the mechanics model of coal mass and roof structure system along the edge of goaf was founded to analyze the stress of roof rock layer,so the subside curve of roof rock layer was deduced.Furthermore,the stability of coal and rock system were analyzed,the critical load and critical resistance zone were used to judge the danger degree of rock burst occurrence.The influence of coal mass strength,brittleness degree,coal seam thickness,roof thickness,suspending length,equivalent shear module on the critical load, critical resistance zone was confirmed.So the rock burst occurrence conditions of coal mass in roadway rib mainly depend on mining depth,coal seam thickness and hard roof and floor,which are decided by the above studies,and successfully applied in prediction and prevention of rock burst in this mine.展开更多
The hidden water-bearing structures near the roadway tunnelling face are very likely to cause water seepage accidents in coal mines.Currently,transient electromagnetic(EM)technology has be-come an important method to ...The hidden water-bearing structures near the roadway tunnelling face are very likely to cause water seepage accidents in coal mines.Currently,transient electromagnetic(EM)technology has be-come an important method to detect water damage in advance of roadway excavation.In this paper,the time-domain finite element algorithm based on unstructured tetrahedron grids is used to accurate-ly simulate the geological body in front of the roadway excavation face and analyze its response.The authors detect the distance between the roadway excavation face and the low-resistivity water-bearing body,the resistivity difference between the low-resistivity body and surrounding rock,and the influence of the size of the low-resistivity body on the transient EM response.Furthermore,the common types of low-resistivity bodies in the roadway drivage process are used for modeling to analyze the attenuation of the detected EM response when there are low-resistivity bodies in front of the roadway.The research in this paper can help effectively detecting the water-bearing low-resistivity body in front of the roadway drivage and lay a foundation for reducing the risk of water seepage accidents.展开更多
The three-dimensional damage constitutive relationship of coal is established and distribution law of the abutment pressure of the integrated coal beside the road-in packing for gob-side entry retaining in fully-mecha...The three-dimensional damage constitutive relationship of coal is established and distribution law of the abutment pressure of the integrated coal beside the road-in packing for gob-side entry retaining in fully-mechanized caving face under the effect of given deformation of the main roof is analyzed by the damage mechanics theory. And the relationship between distribution of the abutment pressure and thickness of coal seam is explored. The presented result is of great theoretical significance and practical value to the study on stability control of the surrounding rock of road-in packing for gob-side entry retaining in fully-mechanized caving face.展开更多
For coal mines,rock,coal,and rock bolt are the critical constituent materials for surrounding rock in the underground engineering.The stability of the“rock-coal-bolt”(RCB)composite system is affected by the structur...For coal mines,rock,coal,and rock bolt are the critical constituent materials for surrounding rock in the underground engineering.The stability of the“rock-coal-bolt”(RCB)composite system is affected by the structure and fracture of the coal-rock mass.More rock bolts installed on the rock,more complex condition of the engineering stress environment will be(tensile-shear composite stress is principal).In this paper,experimental analysis and theoretical verification were performed on the RCB composite system with different angles.The results revealed that the failure of the rock-coal(RC)composite specimen was caused by tensile and shear cracks.After anchoring,the reinforcement body formed inside the composite system limits the area where the crack could occur in the specimen.Specifically,shearing damage occurred only around the bolt,and the stress-strain curve presented a better post-peak mechanical property.The mechanical mechanism of the bolt under the combined action of tension and shear stress was analyzed.Additionally,a rock-coal-bolt tensile-shear mechanical(RCBTSM)model was established.The relationship(similar to the exponential function)between the bolt tensile-shear stress and the angle was obtained.Moreover,the influences of the dilatancy angle and bolt diameter of the RCB composite system were also considered and analyzed.Most of the bolts are subjected to the tensile-shearing action in the post-peak stage.The implications of these results for engineering practice indicated that the bolts of the RCB composite system should be prevented from entering the limit shearing state early.展开更多
This paper proposes a digital image processing-based detection algorithm for cross joint traces of coal roadway heading face.Initially,the acquired images were preprocessed,i.e.,adaptive correction was conducted for n...This paper proposes a digital image processing-based detection algorithm for cross joint traces of coal roadway heading face.Initially,the acquired images were preprocessed,i.e.,adaptive correction was conducted for non-uniform illumination images based on the 2D gamma function.The edge detection algorithm was then applied to extract the edges of the structural plane,followed by the filtration of the non-structural plane noises.Moreover,the Hough transform algorithm was applied to extract the linear edges;finally,the edges were locally connected in accordance with the angle and distance criteria.The experimental results show that this algorithm can be used to reduce the noise caused by non-uniform illumination and avoid the mutual interference of multi-scale edges,so as to effectively extract the traces of the cross joint.Furthermore,Q-system and rock mass rating(RMR),were applied to conduct a quantitative evaluation on the stand-up time of unsupported roof in the four test images.The Q-system quality scores are 26.7,43.3,3.1,and 6.7,and the RMR quality scores are 56.84,58.73,48.42,and 51.42,respectively.The stand-up time of unsupported roofs with a span of 4.6 m are 30,36,7.7 and 14 d,respectively.展开更多
In view of the difficulty in supporting the surrounding rocks of roadway 3-411 ofFucun Coal Mine of Zaozhuang Mining Group, a deformation forecasting model was putforward based on particle swarm optimization.The kerne...In view of the difficulty in supporting the surrounding rocks of roadway 3-411 ofFucun Coal Mine of Zaozhuang Mining Group, a deformation forecasting model was putforward based on particle swarm optimization.The kernel function and model parameterswere optimized using particle swarm optimization.It is shown that the forecast result isvery close to the real monitoring data.Furthermore, the PSO-SVM (Particle Swarm Optimization-Support Vector Machine) model is compared with the GM(1,1) model and L-M BPnetwork model.The results show that PSO-SVM method is better in the aspect of predictionaccuracy and the PSO-SVM roadway deformation pre-diction model is feasible for thelarge deformation prediction of coal mine roadway.展开更多
Abstract On the basis of analyzing floor strata mechanical circumstance of the roadway, the mechanical model was established. The relative displacement of roadway floor, narrow pillar floor coal mass and floor strata ...Abstract On the basis of analyzing floor strata mechanical circumstance of the roadway, the mechanical model was established. The relative displacement of roadway floor, narrow pillar floor coal mass and floor strata was calculated, the results showed that the high abutment pressure on coal mass beside the roadway was the main reason to lead to relative displacement of floor strata. And the roadway floor heave come mainly from three aspects. Firstly, the roadway floor strata is easily fractured by the stretch stress. Secondly, because the high abutment pressure is greater than the uniaxial compressive strength of floor strata, when the roadway floor strata are fractured, the coal mass floor strata at the same depth will be fractured, and broken rock will fluid into the open roadway. Thirdly, comparing with the coal mass floor, the roadway floor is relative ascending.展开更多
The roof of a roadway under goal with ultra-close separation consists of thin rock strata and rocks caving in upper goal. Influenced by the mining of the upper coal seam, the roof is loose and broken, and its integ- r...The roof of a roadway under goal with ultra-close separation consists of thin rock strata and rocks caving in upper goal. Influenced by the mining of the upper coal seam, the roof is loose and broken, and its integ- rity is poor. Resin anchored bolts cannot provide an effective anchoring force in such roof conditions. By conducting free expansion tests and field pull-out tests on a hydraulic expansion bolt, this study has ana- lyzed the influencing factors and laws of radial expansion and anchoring force changes in the rod body. This has revealed the anchoring mechanism of such bolts, and has obtained reasonable water injection pressures and suitable drilling diameters (which are 20-25 MPa and 32-35 mm respectively) for the hydraulic expansion bolt (cR28 mm) used in these tests. Based on pull-out tests at different interlayer spacing, the applicability of hydraulic expansion bolts had been verified for controlling the roof of road- ways under goal with ultra-close distance. Combined with the deformation and failure characteristics of the test roadway roof, this paper proposes a united roof-control technology based on the use of hydraulic expansion bolts and advancing intubation for the roof. Engineering practice indicated that the roof of the test roadway did not generate leaking and caving phenomenon, and the amount of roof deformation was controlled to within 150 mm. Maintenance of the roadway roof has been improved significantly, which ensures safe mining in coal seams with ultra-close separation.展开更多
The develop actuality and direction of FRP(fibre glass reinforced plastics) bolt in the world are analyzed The new type structure of FRP bolt was designed Trial data indicate that, all kinds of capability target o...The develop actuality and direction of FRP(fibre glass reinforced plastics) bolt in the world are analyzed The new type structure of FRP bolt was designed Trial data indicate that, all kinds of capability target of this FRP bolt all achieve and exceed the country standard, substitute present metal bolt,wood bolt and bamboo bolt and other side bolt, it can gain magnitude technology and economy benefit FRP bolt mechanization product line produce efficiency is high, its throughput a day are 750 base, this can meet demand of hit small mining company展开更多
基金supported by National Natural Science Foundation of China(Nos.41204077,41372290,41572244,51034003,51174210,and 51304126)natural science foundation of Shandong Province(Nos.ZR2011EEZ002 and ZR2013EEQ019)State Key Research Development Program of China(No.2016YFC0600708-3)
文摘Currently, numerical simulations of seismic channel waves for the advance detection of geological structures in coal mine roadways focus mainly on modeling two- dimensional wave fields and therefore cannot accurately simulate three-dimensional (3-D) full-wave fields or seismic records in a full-space observation system. In this study, we use the first-order velocity-stress staggered-grid finite difference algorithm to simulate 3-D full-wave fields with P-wave sources in front of coal mine roadways. We determine the three components of velocity Vx, Vy, and Vz for the same node in 3-D staggered-grid finite difference models by calculating the average value of Vy, and Vz of the nodes around the same node. We ascertain the wave patterns and their propagation characteristics in both symmetrical and asymmetric coal mine roadway models. Our simulation results indicate that the Rayleigh channel wave is stronger than the Love channel wave in front of the roadway face. The reflected Rayleigh waves from the roadway face are concentrated in the coal seam, release less energy to the roof and floor, and propagate for a longer distance. There are surface waves and refraction head waves around the roadway. In the seismic records, the Rayleigh wave energy is stronger than that of the Love channel wave along coal walls of the roadway, and the interference of the head waves and surface waves with the Rayleigh channel wave is weaker than with the Love channel wave. It is thus difficult to identify the Love channel wave in the seismic records. Increasing the depth of the receivers in the coal walls can effectively weaken the interference of surface waves with the Rayleigh channel wave, but cannot weaken the interference of surface waves with the Love channel wave. Our research results also suggest that the Love channel wave, which is often used to detect geological structures in coal mine stopes, is not suitable for detecting geological structures in front of coal mine roadways. Instead, the Rayleigh channel wave can be used for the advance detection of geological structures in coal mine roadways.
基金Project(2017XKQY012) supported by the Fundamental Research Funds for the Central Universities,ChinaProject(PAPD) supported by the Priority Academic Program Development of Jiangsu Higher Education Institutions,China
文摘Failure of the surrounding rock around a roadway induced by roof separation is one major type of underground roof-fall accidents.This failure can especially be commonly-seen in a bottom-driven roadway within an extra-thick coal seam("bottom-driven roadway"is used throughout for ease of reference),containing weak partings in their roof coal seams.To determine the upper limit position of the roof interlayer separation is the primary premise for roof control.In this study,a mechanical model for predicting the interlayer separation overlying a bottom-driven roadway within an extra-thick coal seam was established and used to deduce the vertical stress,and length,of the elastic,and plastic zones in the rock strata above the wall of the roadway as well as the formulae for calculating the deflection in different regions of rock strata under bearing stress.Also,an approach was proposed,calculating the stratum load,deflection,and limiting span of the upper limit position of the interlayer separation in a thick coal seam.Based on the key strata control theory and its influence of bedding separation,a set of methods judging the upper limit position of the roof interlayer separation were constructed.In addition,the theoretical prediction and field monitoring for the upper limit position of interlayer separation were conducted in a typical roadway.The results obtained by these two methods are consistent,indicating that the methods proposed are conducive to improving roof control in a thick coal seam.
基金the Research Fund of the State Key Laboratory of Coal Resources and Mine Safety of the China University of Mining & Technology (No.08kf11)
文摘In order to study the mechanism of bolt support and the behavior of strata in a coal roadway under tectonic stress,deformation and destruction of a roof,floor and sides were studied using an experiment in similarity simulation.We also studied the mechanism and types of bolt support functions in the coal roadway.The results show that with an increase in horizontal tectonic stress,the strata in the roof and floor of the roadway gradually separate and become shear failure areas.Coal in side walls moves,but its integrity remains intact.Side bolts are mainly affected by tension and roof bolts by the effect of shear.
基金Financial support for this work, provided by the National Natural Science Foundation of China (No. 51204166)the Henan Polytechnic University Doctor Foundation (No. B2012-081)
文摘In order to effectively control the deformation and failure of surrounding rocks in a coal roadway in a deep tectonic region, the deformation and failure mechanism and stability control mechanism were studied. With such methods as numerical simulation and field testing, the distribution law of the displacement, stress and plastic zone in the surrounding rocks was analyzed. The deformation and failure mechanisms of coal roadways in deep tectonic areas were revealed: under high tectonic stress, two sides will slide along the roof or floor; while the plastic zone of the two sides will extend along the roof or floor,leading to more serious deformation and failure in the corner of two sides and the bolt supporting the corners is readily cut off by the shear force or tension force. Aimed at controlling the large slippage deformation of the two sides, serious deformation and failure in the corners of the two sides and massive bolt breakage, a ‘‘controlling and yielding coupling support'' control technology is proposed. Firstly, bolts which do not pass through the bedding plane should be used in the corners of the roadway, allowing the two sides to have some degree of sliding to achieve the purpose of ‘‘yielding'' support, and which avoid breakage of the bolts in the corner. After yielding support, bolts in the corner of the roadway and which pass through the bedding plane should be used to control the deformation and failure of the coal in the corner. ‘‘Controlling and yielding coupling support'' technology has been successfully applied in engineering practice, and the stability of deep coal roadway has been greatly improved.
基金a grant from the National Natural Science Foundation of China (No. 50674046)a grant from the Scientific Research Fund of Hunan Provincial Education Department(No. 07C293).
文摘Based on the features of the serious deformation of coal roadway,many random variables of the mechanics of the surrounding rocks and the influence of mining, the reliability analysis model of the support structure of coal roadway under the influence of mining is established,and the calculating formulas of reliability of the support structure is obtained with the engineering structure reliability theory. And the reliability is calculated based on the method of Monte Carlo to the coal roadway which is exampled on the influence of mining or not. The relationship between support parameters and reliability, the mining influence coefficients and reliability is established, which provides theory foundations for the design of the coal roadway bolt support.
基金provided by the National Natural Science Foundation of China(No.51234005)National Basic Research Program of China under Grant(No.2010CB226802)Fundamental Research Funds for the Central Universities(No.2010QZ06)
文摘Aiming at the surrounding rock control problem of mining and preparation entries in Xingdong mine with large mining depth, and the comprehensive control countermeasures including high pre-stress cable truss system, this study put forward powerful anchor support system and anchor cable adaption technology to surrounding rock deformation. Furthermore, the control measures possess the supporting performance with ‘‘primary rigid-following flexible-new rigid, and primary resistance-following yield-new resistance'', which suits deep roadway surrounding rock control. The mechanical model of truss anchor supporting roof beams was established, and the inverted arch deflection produced by the cable pre-stress with stress increment effect and roof beam deflection were obtained. And then the system working mechanism was illustrated. Finally, the surrounding rock support parameters were determined by means of comprehensive methods, and put into practice. The results show that surrounding rock deformation realized secondary stability after three months. The roadway sides convergence value was less than 245mm, and roof subsidence was less than 124mm. In addition, there was no expansion and renovation during service period.
基金supported by the National Natural Science Foundation of China (No.50874103)the National Basic Research Program of China (No.2010CB226805)+1 种基金the Natural Science Foundation of Jiangsu Province (No.BK2008135)by the Open Foundation of State Key Laboratory of Geomechanics and Deep Underground Engineering (No.SKLGDUEK0905)
文摘The influence of an upper,mined coal seam on the stability of rock surrounding a roadway in a lower coal seam is examined.The technical problems of roadway control are discussed based on the geological conditions existing in the Liyazhuang Mine No.2 coal seam.The stress distribution and floor failure in the lower works after mining the upper coal is studied through numerical simulations.The failure mechanism of the roof and walls of a roadway located in the lower coal seam is described.The predicted deformation and failure of the roadway for different distances between the two coal seams are used to design two ways of supporting the lower structure.One is a combined support consisting of anchors with a joist steel tent and a combined anchor truss.A field test of the design was performed to good effect.The results have significance for the design of supports for roadways located in similar conditions.
基金supported by the National Natural Science Foundation of China(52204164)Fundamental Research Funds for the Central Universities(2022XJSB03)Young Elite Scientists Sponsorship Program by CAST(2021QNRC001),which are gratefully acknowledged.
文摘Automatic roadway formation by roof cutting is a sustainable nonpillar mining method that has the potential to increase coal recovery,reduce roadway excavation and improve mining safety.In this method,roof cutting is the key process for stress relief,which significantly affects the stability of the formed roadway.This paper presents a directionally single cracking(DSC)technique for roof cutting with considerations of rock properties.The mechanism of the DSC technique was investi-gated by explicit finite element analyses.The DSC technique and roof cutting parameters were evaluated by discrete element simulation and field experiment.On this basis,the optimized DSC technique was tested in the field.The results indicate that the DSC technique could effectively control the blast-induced stress distribution and crack propagation in the roof rock,thus,achieve directionally single cracking on the roadway roof.The DsC technique for roof cutting with optimized parameters could effectively reduce the deformation and improve the stability of the formed roadway.Field engineering application verified the feasibility and effectiveness of the evaluated DSC technique for roof cutting.
文摘According to the research results in world, the paper comprehensively analyzed and gave a demonstration of mechanism of single-truss and its stressing advantage. Comparison and analysis effect were given to single-truss and bolting supporting. By the way of element simulation. The paper shows that single truss supporting have better effect to bolting supporting to improving the stress condition of surrounding rocks, controlling the surrounding rocks plastic failure development zone and deformation effect of surrounding rocks, which provided the elementary theory basis to the research, experiment and expanding the single-truss bolting technology in colliery.
基金Supported by National Basic Research Program of China(2005cb221504)National Key Technologies R & D Program of China(2006BAK03B01)
文摘An active measurement method and its principle was introduced consideringthe low success rate,special difficulty,and long measurement time of the direct gas pressuremeasurement currently used in coal roadways.The technology of drilling,boreholesealing depth,borehole sealing length,sealing control of the measuring process,compensatorycomputation of gas loss quantity and other key techniques were discussed.Finally,based on the latest instrument the authors developed,a series of experiments of directgas pressure measurement in the coal roadways of the Jincheng and Tongchuanmine district,were carried out.The experimental results show that active gas pressuremeasurement technique has advantages as follows:(1) the application scope of direct gaspressure measurement technique is wide and it does not have the restriction of coalhardness,coal seam fissure and other conditions;(2) the measured results are credible,which can be tested by the same gas pressure value acquired from a different borehole inthe same place;(3) the measurement process is convenient and quick,it takes about 2 to3 days to acquire the gas pressure value in a coal seam.
基金National Natural Science Foundation(50674045)Youth Project of Hunan Education Office(04B020)
文摘The mechanical principle and surrounding rock deformation feature of highstress coal roadway was analyzed.The condition of stress balance of the kind of theroadway was put forward.The surrounding rock control principle and supporting techniqueof high stress coal roadway were discussed.It was very important to control early daysdeformation of coal sides.The supporting strength is should increased,so the strengthloss of coal sides is decreased.The range of plastic fluid zone is reduced.The abovemention-ned principle is applied in industrial test,and the new supporting technique is ap-plied successfully.
基金the Natural Science Fund of Liaoning Province(20042176)
文摘According to the rock burst features occurred in the coal mass of roadway rib in one mine,the mechanics model of coal mass and roof structure system along the edge of goaf was founded to analyze the stress of roof rock layer,so the subside curve of roof rock layer was deduced.Furthermore,the stability of coal and rock system were analyzed,the critical load and critical resistance zone were used to judge the danger degree of rock burst occurrence.The influence of coal mass strength,brittleness degree,coal seam thickness,roof thickness,suspending length,equivalent shear module on the critical load, critical resistance zone was confirmed.So the rock burst occurrence conditions of coal mass in roadway rib mainly depend on mining depth,coal seam thickness and hard roof and floor,which are decided by the above studies,and successfully applied in prediction and prevention of rock burst in this mine.
文摘The hidden water-bearing structures near the roadway tunnelling face are very likely to cause water seepage accidents in coal mines.Currently,transient electromagnetic(EM)technology has be-come an important method to detect water damage in advance of roadway excavation.In this paper,the time-domain finite element algorithm based on unstructured tetrahedron grids is used to accurate-ly simulate the geological body in front of the roadway excavation face and analyze its response.The authors detect the distance between the roadway excavation face and the low-resistivity water-bearing body,the resistivity difference between the low-resistivity body and surrounding rock,and the influence of the size of the low-resistivity body on the transient EM response.Furthermore,the common types of low-resistivity bodies in the roadway drivage process are used for modeling to analyze the attenuation of the detected EM response when there are low-resistivity bodies in front of the roadway.The research in this paper can help effectively detecting the water-bearing low-resistivity body in front of the roadway drivage and lay a foundation for reducing the risk of water seepage accidents.
基金Supported by the National Science Foundation of China (50874042, 50674046)National Science Important Foundation (50634050)Hunan Science Foundation (06JJ50092)
文摘The three-dimensional damage constitutive relationship of coal is established and distribution law of the abutment pressure of the integrated coal beside the road-in packing for gob-side entry retaining in fully-mechanized caving face under the effect of given deformation of the main roof is analyzed by the damage mechanics theory. And the relationship between distribution of the abutment pressure and thickness of coal seam is explored. The presented result is of great theoretical significance and practical value to the study on stability control of the surrounding rock of road-in packing for gob-side entry retaining in fully-mechanized caving face.
基金Beijing Outstanding Young Scientist Program(BJJWZYJH01201911413037)the projects supported by National Natural Science Foundation of China(Grants Nos.41877257,51622404,and 51974117)Shaanxi Coal Group Key Project(2018SMHKJ-A-J-03)。
文摘For coal mines,rock,coal,and rock bolt are the critical constituent materials for surrounding rock in the underground engineering.The stability of the“rock-coal-bolt”(RCB)composite system is affected by the structure and fracture of the coal-rock mass.More rock bolts installed on the rock,more complex condition of the engineering stress environment will be(tensile-shear composite stress is principal).In this paper,experimental analysis and theoretical verification were performed on the RCB composite system with different angles.The results revealed that the failure of the rock-coal(RC)composite specimen was caused by tensile and shear cracks.After anchoring,the reinforcement body formed inside the composite system limits the area where the crack could occur in the specimen.Specifically,shearing damage occurred only around the bolt,and the stress-strain curve presented a better post-peak mechanical property.The mechanical mechanism of the bolt under the combined action of tension and shear stress was analyzed.Additionally,a rock-coal-bolt tensile-shear mechanical(RCBTSM)model was established.The relationship(similar to the exponential function)between the bolt tensile-shear stress and the angle was obtained.Moreover,the influences of the dilatancy angle and bolt diameter of the RCB composite system were also considered and analyzed.Most of the bolts are subjected to the tensile-shearing action in the post-peak stage.The implications of these results for engineering practice indicated that the bolts of the RCB composite system should be prevented from entering the limit shearing state early.
基金supported by the National Natural Scieince Foundation of China(Nos.52004204 and 52034007).
文摘This paper proposes a digital image processing-based detection algorithm for cross joint traces of coal roadway heading face.Initially,the acquired images were preprocessed,i.e.,adaptive correction was conducted for non-uniform illumination images based on the 2D gamma function.The edge detection algorithm was then applied to extract the edges of the structural plane,followed by the filtration of the non-structural plane noises.Moreover,the Hough transform algorithm was applied to extract the linear edges;finally,the edges were locally connected in accordance with the angle and distance criteria.The experimental results show that this algorithm can be used to reduce the noise caused by non-uniform illumination and avoid the mutual interference of multi-scale edges,so as to effectively extract the traces of the cross joint.Furthermore,Q-system and rock mass rating(RMR),were applied to conduct a quantitative evaluation on the stand-up time of unsupported roof in the four test images.The Q-system quality scores are 26.7,43.3,3.1,and 6.7,and the RMR quality scores are 56.84,58.73,48.42,and 51.42,respectively.The stand-up time of unsupported roofs with a span of 4.6 m are 30,36,7.7 and 14 d,respectively.
基金Supported by the National Natural Science Foundation of Zhejiang Province(2009C33049)the National Natural Science Foundation of China(50674040)
文摘In view of the difficulty in supporting the surrounding rocks of roadway 3-411 ofFucun Coal Mine of Zaozhuang Mining Group, a deformation forecasting model was putforward based on particle swarm optimization.The kernel function and model parameterswere optimized using particle swarm optimization.It is shown that the forecast result isvery close to the real monitoring data.Furthermore, the PSO-SVM (Particle Swarm Optimization-Support Vector Machine) model is compared with the GM(1,1) model and L-M BPnetwork model.The results show that PSO-SVM method is better in the aspect of predictionaccuracy and the PSO-SVM roadway deformation pre-diction model is feasible for thelarge deformation prediction of coal mine roadway.
文摘Abstract On the basis of analyzing floor strata mechanical circumstance of the roadway, the mechanical model was established. The relative displacement of roadway floor, narrow pillar floor coal mass and floor strata was calculated, the results showed that the high abutment pressure on coal mass beside the roadway was the main reason to lead to relative displacement of floor strata. And the roadway floor heave come mainly from three aspects. Firstly, the roadway floor strata is easily fractured by the stretch stress. Secondly, because the high abutment pressure is greater than the uniaxial compressive strength of floor strata, when the roadway floor strata are fractured, the coal mass floor strata at the same depth will be fractured, and broken rock will fluid into the open roadway. Thirdly, comparing with the coal mass floor, the roadway floor is relative ascending.
基金supports from the National Natural Science Foundation of China (Nos. 51204166 and 51174195)the Advantage Disciplines Construction Fund Program of Jiangsu Universities (No. SZBF2011-6-B35)
文摘The roof of a roadway under goal with ultra-close separation consists of thin rock strata and rocks caving in upper goal. Influenced by the mining of the upper coal seam, the roof is loose and broken, and its integ- rity is poor. Resin anchored bolts cannot provide an effective anchoring force in such roof conditions. By conducting free expansion tests and field pull-out tests on a hydraulic expansion bolt, this study has ana- lyzed the influencing factors and laws of radial expansion and anchoring force changes in the rod body. This has revealed the anchoring mechanism of such bolts, and has obtained reasonable water injection pressures and suitable drilling diameters (which are 20-25 MPa and 32-35 mm respectively) for the hydraulic expansion bolt (cR28 mm) used in these tests. Based on pull-out tests at different interlayer spacing, the applicability of hydraulic expansion bolts had been verified for controlling the roof of road- ways under goal with ultra-close distance. Combined with the deformation and failure characteristics of the test roadway roof, this paper proposes a united roof-control technology based on the use of hydraulic expansion bolts and advancing intubation for the roof. Engineering practice indicated that the roof of the test roadway did not generate leaking and caving phenomenon, and the amount of roof deformation was controlled to within 150 mm. Maintenance of the roadway roof has been improved significantly, which ensures safe mining in coal seams with ultra-close separation.
文摘The develop actuality and direction of FRP(fibre glass reinforced plastics) bolt in the world are analyzed The new type structure of FRP bolt was designed Trial data indicate that, all kinds of capability target of this FRP bolt all achieve and exceed the country standard, substitute present metal bolt,wood bolt and bamboo bolt and other side bolt, it can gain magnitude technology and economy benefit FRP bolt mechanization product line produce efficiency is high, its throughput a day are 750 base, this can meet demand of hit small mining company