The stability of a backfill wall is critical to implement gob-side entry driving technology in which a small coal pillar is substituted by a waste backfill wall. Based on features of surrounding rock structures in the...The stability of a backfill wall is critical to implement gob-side entry driving technology in which a small coal pillar is substituted by a waste backfill wall. Based on features of surrounding rock structures in the backfill wall, we propose a mechanical model on the structural effect of a soft-hard backfill wall using theory analysis, physical experiments and a numerical simulation. The results show thatChe deformation of the structure of the soft-hard backfill wall is coordinated with the roof and floor. The soft structure on the top of the backfill wall can absorb the energy in the roof by its large deformation and adapt to the given deformation caused by the rotation and subsidence of a key rock block. The hard structure at the bottom of the backfill wall can absorb the strong supporting resistance from the top surrounding rock. The soft structure on the top protecting the hard bottom structure by its large deformation contributes to the stability of the entire backfill wall. An application indicated that the stress in the backfill wall effec- tively decreased and its deformation was significantly reduced after the top coal remained. This ensured the stability of the backfill wall.展开更多
By using the Radar penetrating technology and numerical simulations, the fractured zone could be easily determined. Both wall fractured zone and mining action of coal seam roadway were considered, and the bolt reinfor...By using the Radar penetrating technology and numerical simulations, the fractured zone could be easily determined. Both wall fractured zone and mining action of coal seam roadway were considered, and the bolt reinforcing criteria for wall including low limit condition and up limit condition were put up, which supply a basis for the bolt reinforcement design. For a particular engineering, there existed a bolt reinforcing controllable range which can be determined by the method put up in this paper. For the out of controllable range of bolt reinforcement in engineering, it is necessary to seek for other kind rein forcing technology, because the bolt reinforcing technology is not omnipotent.展开更多
基金Financial supports for this work, provided by the New Century Excellent Talents in University (No.NCET-05-0480)the Research Fund of the State Key Laboratory of Coal Resources and Mine Safety of CUMT (No.09KF06)the Scientific Research Fund of CUMT (No.OA090239)
文摘The stability of a backfill wall is critical to implement gob-side entry driving technology in which a small coal pillar is substituted by a waste backfill wall. Based on features of surrounding rock structures in the backfill wall, we propose a mechanical model on the structural effect of a soft-hard backfill wall using theory analysis, physical experiments and a numerical simulation. The results show thatChe deformation of the structure of the soft-hard backfill wall is coordinated with the roof and floor. The soft structure on the top of the backfill wall can absorb the energy in the roof by its large deformation and adapt to the given deformation caused by the rotation and subsidence of a key rock block. The hard structure at the bottom of the backfill wall can absorb the strong supporting resistance from the top surrounding rock. The soft structure on the top protecting the hard bottom structure by its large deformation contributes to the stability of the entire backfill wall. An application indicated that the stress in the backfill wall effec- tively decreased and its deformation was significantly reduced after the top coal remained. This ensured the stability of the backfill wall.
文摘By using the Radar penetrating technology and numerical simulations, the fractured zone could be easily determined. Both wall fractured zone and mining action of coal seam roadway were considered, and the bolt reinforcing criteria for wall including low limit condition and up limit condition were put up, which supply a basis for the bolt reinforcement design. For a particular engineering, there existed a bolt reinforcing controllable range which can be determined by the method put up in this paper. For the out of controllable range of bolt reinforcement in engineering, it is necessary to seek for other kind rein forcing technology, because the bolt reinforcing technology is not omnipotent.