期刊文献+
共找到1,016篇文章
< 1 2 51 >
每页显示 20 50 100
Application of a combined supporting technology with U-shaped steel support and anchor-grouting to surrounding soft rock reinforcement in roadway 被引量:17
1
作者 王辉 郑朋强 +1 位作者 赵文娟 田洪铭 《Journal of Central South University》 SCIE EI CAS CSCD 2018年第5期1240-1250,共11页
Soft rock surrounding deep roadway has poor stability and long-term rheological effect. More and larger deformation problems of surrounding rock occur due to adverse supporting measures for such roadways, which not on... Soft rock surrounding deep roadway has poor stability and long-term rheological effect. More and larger deformation problems of surrounding rock occur due to adverse supporting measures for such roadways, which not only affects the engineering safety critically but also improves the maintenance costs. This paper takes the main rail roadway with severely deformation in China's Zaoquan coal mine as an example to study the long-term deformation tendency and damage zone by means of in-situ deformation monitoring and acoustic wave testing technique. A three-dimensional finite element model reflecting the engineering geological condition and initial design scheme is established by ABAQUS. Then, on the basis of field monitoring deformation data, the surrounding rock geotechnical and theological parameters of the roadway are obtained by back analysis. A combined supporting technology with U-shaped steel support and anchor-grouting is proposed for the surrounding soft rock. The numerical simulation of the combined supporting technology and in-situ deformation monitoring results show that the soft rock surrounding the roadway has been held effectively. 展开更多
关键词 soft rock roadway rheological effect supporting technology numerical simulation REINFORCEMENT
下载PDF
Bolt-grouting combined support technology in deep soft rock roadway 被引量:12
2
作者 Chen Yanlong Meng Qingbin +2 位作者 Xu Guang Wu Haoshuai Zhang Guimin 《International Journal of Mining Science and Technology》 SCIE EI CSCD 2016年第5期777-785,共9页
Analyzing the mineral composition, mechanical properties and ground stress testing in surrounding rock,the study investigated the failure mechanism of deep soft rock roadway with high stress. The boltgrouting combined... Analyzing the mineral composition, mechanical properties and ground stress testing in surrounding rock,the study investigated the failure mechanism of deep soft rock roadway with high stress. The boltgrouting combined support system was proposed to prevent such failures. By means of FLAC3D numerical simulation and similar material simulation, the feasibility of the support design and the effectiveness of support parameters were discussed. According to the monitoring the surface and deep displacement in surrounding rock as well as bolt axial load, this paper analyzed the deformation of surrounding rock and the stress condition of the support structure. The monitor results were used to optimize the proposed support scheme. The results of field monitors demonstrate that the bolt-grouting combined support technology could improve the surround rock strength and bearing capacity of support structure, which controlled the great deformation failure and rheological property effectively in deep soft rock roadway with high stress. As a result, the long term stability and safety are guaranteed. 展开更多
关键词 Deep soft rock roadway Bolt-grouting support Numerical simulation Similar material simulation High stress
下载PDF
Influence of dynamic pressure on deep underground soft rock roadway support and its application 被引量:4
3
作者 Meng Qingbin Han Lijun +4 位作者 Chen Yanlong Fan Jiadong Wen Shengyong Yu Liyuan Li Hao 《International Journal of Mining Science and Technology》 SCIE EI CSCD 2016年第5期903-912,共10页
Due to high ground stress and mining disturbance, the deformation and failure of deep soft rock roadway is serious, and invalidation of the anchor net-anchor cable supporting structure occurs. The failure characterist... Due to high ground stress and mining disturbance, the deformation and failure of deep soft rock roadway is serious, and invalidation of the anchor net-anchor cable supporting structure occurs. The failure characteristics of roadways revealed with the help of the ground pressure monitoring. Theoretical analysis was adopted to analyze the influence of mining disturbance on stress distribution in surrounding rock,and the change of stress was also calculated. Considering the change of stress in surrounding rock of bottom extraction roadway, the displacement, plastic zone and distribution law of principal stress difference under different support schemes were studied by means of FLAC3D. The supporting scheme of U-shaped steel was proposed for bottom extraction roadway that underwent mining disturbance. We carried out a similarity model test to verify the effect of support in dynamic pressure. Monitoring results demonstrated the change rules of deformation and stress of surrounding rock in different supporting schemes. The supporting scheme of U-shaped steel had an effective control on deformation of surrounding rock. The scheme was successfully applied in underground engineering practice, and achieved good technical and economic benefits. 展开更多
关键词 Deep soft rock roadway Dynamic pressure impact Similarity model test Combined support Ground pressure monitoring
下载PDF
Anchoring mechanism and application of hydraulic expansion bolts used in soft rock roadway floor heave control 被引量:20
4
作者 Chang Qingliang Zhou Huaqiang +1 位作者 Xie Zhihong Shen Shiping 《International Journal of Mining Science and Technology》 SCIE EI 2013年第3期323-328,共6页
Comparing with the resin bolt, the hydraulic expansion bolt has different anchoring mechanism and application advantage. According to the working mechanism of the hydraulic expansion bolt, its anchoring force is expre... Comparing with the resin bolt, the hydraulic expansion bolt has different anchoring mechanism and application advantage. According to the working mechanism of the hydraulic expansion bolt, its anchoring force is expressed in four forms including support anchoring force, tension anchoring force, expansion anchoring force and tangent anchoring force, and their values can be obtained on the basis of each calculation formula. Among them, the expansion anchoring force, which is the unique anchoring force of the hydraulic expansion bolt, can provide confining pressure to increase the strength of rock. Aiming at solving the problem of stability control in the soft rock roadway in Jinbaotun Coal Mine which has a double layer of 40 U-type sheds and cannot provide enough resistance support to control floor heave, the study reveals the mechanism of floor heave in the soft rock roadway, and designs the reasonable support parameters of the hydraulic expansion bolts. The observed results of floor convergence indicate that the hydraulic expansion bolts can prevent the development and flow of the plastic zone in the floor rock to control floor heave. Research results enrich the control technology in the soft rock roadway. 展开更多
关键词 Hydraulic expansion bolt Anchoring force soft rock roadway Floor heave Shed support
下载PDF
An experimental study of a yielding support for roadways constructed in deep broken soft rock under high stress 被引量:7
5
作者 Lu Yinlong Wang Lianguo Zhang Bei 《Mining Science and Technology》 EI CAS 2011年第6期839-844,共6页
A rationally designed support for deep roadways excavated in broken soft rock under high stress was investigated. The deformation and failure characteristics and the mechanism of ''yielding support'' w... A rationally designed support for deep roadways excavated in broken soft rock under high stress was investigated. The deformation and failure characteristics and the mechanism of ''yielding support'' was studied for anchor bolts and cables. The rail roadway of the 2-501 working face in the Liyazhuang Mine of the Huozhou coal area located in Shanxi province was used for field trials. The geological conditions used there were used during the design phase. The new ''highly resistant, yielding'' support system has a core of high strength, yielding bolts and anchor cables. The field tests show that this support system adapts well to the deformation and pressure in the deep broken soft rock. The support system effectively controls damage to the roadway and ensures the long term stability of the wall rock and safe production in the coal mine. This provides a remarkable economic and social benefit and has broad prospects for fur- ther application. 展开更多
关键词 High stress Broken soft rock roadways Yielding support Yielding anchor bolt
下载PDF
Theory of SCSTKP in Soft Rock Roadway 被引量:3
6
作者 何满朝 徐能雄 +1 位作者 姚爱军 王俊臣 《International Journal of Mining Science and Technology》 2000年第2期2-6,共5页
The secondary coupling supporting technique on key parts (SCSTKP) is put forward. Based on the coupling state between supporting structure and surrounding rock of roadway, the key parts are divided into four types, an... The secondary coupling supporting technique on key parts (SCSTKP) is put forward. Based on the coupling state between supporting structure and surrounding rock of roadway, the key parts are divided into four types, and the characteristics of each type are described. The method to determine the optimum supporting time is also presented. 展开更多
关键词 soft rock roadway coupling design key parts coupling supporting
下载PDF
Mechanical mechanism and support design analysis on bolt-beam-net support in soft rock roadway in Qigou Coal Mine
7
作者 LI Tao SHAN Ren-liang +2 位作者 HAN Huan-shang YANG Wei-hong LIU Nian 《Journal of Coal Science & Engineering(China)》 2012年第3期247-253,共7页
The deformation and failure mechanical mechanism in soft rock roadway is related to the stability of supported tunnels, which is important to coal mine production and construction. By physical mechanics experiments an... The deformation and failure mechanical mechanism in soft rock roadway is related to the stability of supported tunnels, which is important to coal mine production and construction. By physical mechanics experiments and X-ray diffraction (XRD) tests, the engineering mechanical properties of soft rock, as well as main mineral composition of the surrounding soft rock of Qigou Coal Mine, were obtained. Based on analysis results, a method using bolt-beam-net combination to support was put forward. Mechanical analysis of the support form was done by using the calculation software FLAC3D. Results show that clay minerals of this mine are kaolinite and illite mixed layer, of which the water absorption is relatively obvious and presented mudding characteristic after absorbing water, with the plasticity index of 0.35, with small expansibility, which is weakly consolidated colloid with strong connected force in unit cell. The rock blocks have the characteristics of moisture absorption softening, and the deformation mechanical mechanism of which is with the coexistence of molecular expansive mechanism, colloid expansive mechanism, and weak layer trend type. The calculation results show that the bolt-beam-net support structure makes the bolt, beam, and roof deform compatibly. The beams make the force in the bolt relatively homogeneous, which restricts the displacement of the tunnel roof as well. Finally, using in situ monitoring, the numerical results were verified. 展开更多
关键词 soft rock roadway mechanical mechanism combined supporting support design in situ monitoring
下载PDF
RESEARCH ON REPAIR SUPPORT FOR FLOOR HEAVE IN SOFT ROCK ROADWAY
8
作者 黄庆享 杨忠民 《Journal of Coal Science & Engineering(China)》 1997年第1期11-16,共6页
The run-around of Xiagou subincline bottom is a soft rock roadway, its floor has heaved over 1 m. ln this paper, by electronic microscope scanning and X-ray diffraction analy-sis, the components of the soft rock are d... The run-around of Xiagou subincline bottom is a soft rock roadway, its floor has heaved over 1 m. ln this paper, by electronic microscope scanning and X-ray diffraction analy-sis, the components of the soft rock are determined and the breaking mechanism of roadway is analyzed as well. Through finite element calculation and simulation model test, the reasonable repair support method is put forward. 展开更多
关键词 soft rock property breaking mechanism of roadway repair support
下载PDF
APPLICATION OF NEURAL NETWORK TO SUPPORT OF ROADWAY IN SOFT ROCK 被引量:1
9
作者 韩凤山 康立勋 《Journal of Coal Science & Engineering(China)》 2000年第1期37-39,共3页
It is well known that artificial neural network which has marvelous ability to gain knowledge has been widely used in various engineering field.In this paper, support of roadway in soft rock has been researched based ... It is well known that artificial neural network which has marvelous ability to gain knowledge has been widely used in various engineering field.In this paper, support of roadway in soft rock has been researched based on neural network. 展开更多
关键词 neural network support of roadway soft rock
全文增补中
Surrounding Rock Control Technology of Strong Dynamic Pressure Roadway in Hudi Coal Industry
10
作者 Yixue Jia 《World Journal of Engineering and Technology》 2024年第2期362-372,共11页
Aiming at the problems of large deformation and difficult maintenance of deep soft rock roadway under the influence of high ground stress and strong dynamic pressure, taking the surrounding rock control of 1105 lane i... Aiming at the problems of large deformation and difficult maintenance of deep soft rock roadway under the influence of high ground stress and strong dynamic pressure, taking the surrounding rock control of 1105 lane in Hudi Coal Industry as an example, the deformation characteristics and surrounding rock control measures of deep soft rock roadway are analyzed and discussed by means of geological data analysis, roadway deformation monitoring, rock crack drilling and field test. The results show that the main causes of roadway deformation are high ground stress, synclinal tectonic stress, advance mining stress, roadway penetration and surrounding rock fissure development. Based on the deformation characteristics and mechanism of lane 1105, the supporting countermeasures of “roof synergic support, layered grouting, anchor cable beam support, closed hardening of roadway surface” are proposed, which can provide reference for the control of deep roadway surrounding rock under similar conditions. 展开更多
关键词 Deep roadway Combined Support Surrounding rock Control soft rock roadway
下载PDF
Controlling entry in soft rock with natural support strength,strikesill,etc.
11
作者 王有俊 赵庆彪 孙利中 《Journal of Coal Science & Engineering(China)》 2008年第2期186-189,共4页
Presented the concept of the natural support strength.The natural support strength,the strike sill,the multifunction retractors (developed by the author) and etc.were used with the technical measures to change the pas... Presented the concept of the natural support strength.The natural support strength,the strike sill,the multifunction retractors (developed by the author) and etc.were used with the technical measures to change the passive support to the initiative support, and the soft rock entry was supported.And its process is simple and less equipment is needed,and the cost is low and the advance rate is high,which can meet the require- ments of actual mining.It solves many support difficult problems. 展开更多
关键词 natural support strength strike sill multifunction retractor soft rock entry
下载PDF
Study on Repairing Permanent Transportation Roadway in Deep Mining by Bolt-Shotcrete and Mesh Supporting 被引量:10
12
作者 宋宏伟 鹿守敏 《International Journal of Mining Science and Technology》 SCIE EI 1999年第2期167-171,共5页
The roadway support in many places of Jiulongkou Colliery, Fengfeng Mining Bureau, such as in the Permanent transportation roadway, was failed or locally caved, which seriously affected the colliery’s coal production... The roadway support in many places of Jiulongkou Colliery, Fengfeng Mining Bureau, such as in the Permanent transportation roadway, was failed or locally caved, which seriously affected the colliery’s coal production performance and safety. Based on analysis of supporting objects for roadway repairing, this paper proposes the supporting parameters and condruction technics. The industrial ted of 70m long roadway repairing shows that the proposed parameters and technics of bolt shotcrete and mesh support for roadway repairing are reasouable, bring good technical and economic results for the colliery, and the repairing is successful. 展开更多
关键词 roadway repairing soft rock support bolt-shotcrete supporting broken rock zone
下载PDF
Control technology for floor heave of Jurassic soft rock in the Erdos Basin of China: A case study 被引量:3
13
作者 WEN Zhi-jie JING Suo-lin +1 位作者 MENG Fan-bao JIANG Yu-jing 《Journal of Central South University》 SCIE EI CAS CSCD 2022年第12期4051-4065,共15页
The deformation of soft rock roadway caused by floor heave is a major challenge for coal mines in China western mining areas. To achieve security and stability of soft rock roadway, this work considered the headgate a... The deformation of soft rock roadway caused by floor heave is a major challenge for coal mines in China western mining areas. To achieve security and stability of soft rock roadway, this work considered the headgate at panel 11505 of the Yushujing Coal Mine as background. First, based on the limit equilibrium method and slip line field theory,a model of floor heave was established, the mechanism of floor heave control was analyzed, and an optimized support method was proposed. Then, the displacement, stress and failure zones around the surrounding rock with the original and optimized support were studied by FLAC. Finally, the serviceability of the support method was verified by field application. The results showed that the main deformation form of soft rock roadway is floor heave, and 0.5 m is relatively reasonable thicknesses of the inverted arch. The extrusion failure zone and shear failure zone were mainly affected by tensile and shear failure, respectively. The modification of floor and the effective support are key points. The failure zone was consistent between numerical simulation and theoretical calculation. The maximum convergences of floor heave determined by numerical simulation and field measurement were 220 mm and 240 mm, respectively, which were reduced by 55% and 60% compared with the original support, and the convergence between sidewalls decreased considerably. The optimized support method controls the floor heave well. 展开更多
关键词 soft rock roadway floor heave mechanical model control mechanism optimized support
下载PDF
Failure mechanism of bolting support and high-strength bolt-grouting technology for deep and soft surrounding rock with high stress 被引量:16
14
作者 李术才 王洪涛 +5 位作者 王琦 江贝 王富奇 郭念波 刘文江 任尧喜 《Journal of Central South University》 SCIE EI CAS CSCD 2016年第2期440-448,共9页
In deep underground mining, the surrounding rocks are very soft with high stress. Their deformation and destruction are serious, and frequent failures occur on the bolt support. The failure mechanism of bolt support i... In deep underground mining, the surrounding rocks are very soft with high stress. Their deformation and destruction are serious, and frequent failures occur on the bolt support. The failure mechanism of bolt support is proposed to solve these problems. A calculation theory is established on the bond strength of the interface between the anchoring agent and surrounding rocks. An analysis is made on the influence law of different mechanical parameters of surrounding rocks on the interfacial bond strength. Based on the research, a new high-strength bolt-grouting technology is developed and applied on site. Besides, some helpful engineering suggestions and measures are proposed. The research shows that the serious deformation and failure, and the lower bond strength are the major factors causing frequent failures of bolt support. So, the bolt could not give full play to its supporting potential. It is also shown that as the integrity, strength, interface dilatancy and stress of surrounding rocks are improved, the bond strength will increase. So, the anchoring force on surrounding rocks can be effectively improved by employing an anchoring agent with high sand content, mechanical anchoring means, or grouting reinforcement. The new technology has advantages in a high strength, imposing pre-tightening force, and giving full play to the bolt supporting potential. Hence, it can improve the control effect on surrounding rocks. All these could be helpful references for the design of bolt support in deep underground mines. 展开更多
关键词 high stress soft rock bolting support interface dilation failure mechanism high strength bolt-grouting technology
下载PDF
软弱围岩掘锚一体化快速掘进关键技术与工程实践 被引量:4
15
作者 王虹 李发泉 张小峰 《煤炭科学技术》 EI CAS CSCD 北大核心 2024年第1期280-287,共8页
软弱围岩掘锚一体化快速掘进关键技术与装备是煤矿安全高效开采以及智能化建设的迫切需求。以具备膨胀性、节理化等软岩特征的煤矿回采巷道工程为背景,梳理了国内外掘锚一体机快速掘进技术发展现状,剖析了软弱围岩条件下掘锚一体机快速... 软弱围岩掘锚一体化快速掘进关键技术与装备是煤矿安全高效开采以及智能化建设的迫切需求。以具备膨胀性、节理化等软岩特征的煤矿回采巷道工程为背景,梳理了国内外掘锚一体机快速掘进技术发展现状,剖析了软弱围岩条件下掘锚一体机快速掘进面临3个方面的难题,包括全宽截割对围岩的扰动控制,软弱围岩及时高效永久支护,软弱围岩快速掘进煤帮临时支护。提出了软弱围岩掘锚一体化快速掘进的5项关键技术,包括:(1)低扰动截割技术。主要包括椭型全宽截割滚筒、截齿排布优化、截割动力学优化等。(2)减小空顶空帮距的及时支护技术。该技术是在掘锚一体化技术基础上,研制了集双圆柱导向、多连杆升降、支护油缸撑顶撑底、随动挡矸帘防护于一体的多钻机整体滑移平台,将掘锚一体机作业空顶距由2.5 m降至1 m,作业空帮距由3.5 m降至1 m。(3)软弱围岩多维度协同支护技术。综合考虑锚杆锚索支护参数间的时空协同效应和支护体与围岩的协同效应,掘进工作面采用低密度强力锚杆支护控制顶板,后部同步实施增强永久支护。(4)钻锚一体化技术。主要包括锚杆结构和力学特性、锚固剂材料及泵注技术等。(5)煤帮喷涂临时支护技术。主要包括快反应高延伸率喷涂材料、高比例精度喷涂泵送、不规则煤壁表面自适应轨迹控制、矿用防爆高精度机械臂、喷涂材料配套补给等。基于以上内容,研制了可控作业空顶距掘锚一体机,并进行了井下试验。试验表明,该装备有效缩短了作业空顶距和空帮距,实现了作业空顶距“可控”,适应于软弱围岩巷道快速掘进,掘进效率提高了1倍。 展开更多
关键词 软岩巷道 快速掘进 掘锚一体化 钻锚一体化 协同支护
下载PDF
深部极松软围岩沿空巷道稳定性控制及应用
16
作者 袁安营 田鑫 +1 位作者 李唐 徐超凡 《煤炭工程》 北大核心 2024年第4期36-44,共9页
针对深部高应力作用下极松软围岩变形量大、破碎程度高、巷道难支护等问题,以丁集煤矿1232(3)沿空巷道为工程背景,采用数值模拟、现场监测和井下试验相结合的方法,对深部高应力极松软围岩沿空巷道破坏特征及阶段性控制原理和技术进行研... 针对深部高应力作用下极松软围岩变形量大、破碎程度高、巷道难支护等问题,以丁集煤矿1232(3)沿空巷道为工程背景,采用数值模拟、现场监测和井下试验相结合的方法,对深部高应力极松软围岩沿空巷道破坏特征及阶段性控制原理和技术进行研究。结果表明:随着距巷道迎头距离的不断增大,巷道两帮应力的不对称性逐渐增大,实体煤侧应力峰值为37.18 MPa大于煤柱侧35.21 MPa,1242(3)终采线50 m范围内存在应力集中,最大达33 MPa,巷道围岩塑性区发育程度为煤柱帮大于实体煤帮大于顶底板;从巷道掘进过程中所经历的复杂围岩变化过程,将全巷道划分为5种典型的围岩变化阶段来分析围岩变形破坏特征和破坏机理,揭示了在高应力作用下深部软岩沿空巷道围岩变形量大,在空间上呈现出明显的区域性和非对称性的特征;基于巷道初步设计方案和围岩变形破坏特征,及时有效的调整支护方案,对巷道进行分段式、非对称、区域化综合治理,形成深部软岩巷道围岩控制长效机制,为同类型深部软岩巷道地压治理提供了理论和技术支撑。 展开更多
关键词 深部高应力 极松软围岩 沿空巷道 围岩控制 阶段性支护
下载PDF
新上海一号煤矿软岩回采巷道预裂卸压技术研究
17
作者 刘光饶 张勇 +9 位作者 左海峰 耿东坤 杨位良 何晓青 刘建荣 宋杰 翟军存 张传伟 孙毅 王传峰 《煤炭技术》 CAS 2024年第4期18-22,共5页
基于新上海一号煤矿软岩巷道支护薄弱的特点,提出了一种新的预裂卸压技术,旨在解决软岩巷道围岩大变形控制难题。该技术主要采用超前预裂卸压为主、NPR锚索协同支护为辅的方式,通过预裂卸压切断采空区顶板与巷道顶板之间的联系,加速顶... 基于新上海一号煤矿软岩巷道支护薄弱的特点,提出了一种新的预裂卸压技术,旨在解决软岩巷道围岩大变形控制难题。该技术主要采用超前预裂卸压为主、NPR锚索协同支护为辅的方式,通过预裂卸压切断采空区顶板与巷道顶板之间的联系,加速顶板垮断,减小悬臂长度及传递至临空巷道顶板的覆岩荷载。同时,采用NPR锚索提前对巷道进行补强加固,确保了沿空巷道在超前应力影响下的稳定性。实地应用表明,采用预裂卸压技术回采巷道围岩变形量得到有效控制,验证了预裂卸压技术的有效性。为软岩巷道稳定性控制提供了一种新的解决方案。 展开更多
关键词 软岩巷道 大变形 预裂卸压 协同支护 稳定性控制
下载PDF
采动应力作用巷道交岔点稳定性分析及支护优化
18
作者 刘小虎 查文华 +3 位作者 姚直书 赖斯祾 黄仁贵 梁译文 《煤炭技术》 CAS 2024年第7期14-19,共6页
深部软岩巷道交岔点稳定性控制是地下开采的难题,采区内巷道交岔点受采动应力作用更易发生变形破坏。针对该问题,依托805工作面下伏西二回风巷道交岔点工程背景进行研究,建立考虑工作面采动集中应力影响的巷道交岔点垂直应力计算式,采... 深部软岩巷道交岔点稳定性控制是地下开采的难题,采区内巷道交岔点受采动应力作用更易发生变形破坏。针对该问题,依托805工作面下伏西二回风巷道交岔点工程背景进行研究,建立考虑工作面采动集中应力影响的巷道交岔点垂直应力计算式,采用数值计算方法分析不同采动应力集中系数、不同交岔角度下交岔点围岩应力及塑性区分布规律。得知随着采动应力集中系数增大,交岔点岩柱应力集中现象加剧、围岩塑性区发育范围增大、交岔点变形破坏加剧。基于上述分析,提出以全长预应力锚杆+锚索+围岩注浆的综合化主动支护方法。结合矿压监测,优化后支护效果良好。研究结果为类似采动应力影响下的巷道交岔点围岩稳定性控制提供技术参考。 展开更多
关键词 深部软岩 巷道交岔点 采动应力 支护加固设计 矿压监测
下载PDF
强采动巷道断顶卸压稳定性控制机理及应用 被引量:1
19
作者 刘光饶 齐振敏 +5 位作者 杨位良 刘建荣 翟军存 何晓青 王慧 孙延辉 《科学技术与工程》 北大核心 2024年第17期7090-7098,共9页
为解决强采动条件下巷道大变形难题,以新上海一号矿1806N工作面辅运顺槽为工程背景,采用实地勘探、理论分析、数值模拟的方法分析强采动巷道变形破坏原因及围岩大变形机理,提出相应的控制对策进行现场工业性试验。研究发现:1806N工作面... 为解决强采动条件下巷道大变形难题,以新上海一号矿1806N工作面辅运顺槽为工程背景,采用实地勘探、理论分析、数值模拟的方法分析强采动巷道变形破坏原因及围岩大变形机理,提出相应的控制对策进行现场工业性试验。研究发现:1806N工作面辅运顺槽大变形主要影响因素为岩石强度低、节理裂隙发育、完整性差、顶板富水严重、围岩遇水泥化,强采动高集中应力。基于围岩大变形断顶控制机理,形成辅运顺槽深部爆破定向预裂断顶结合补强加固的设计方案。借助数值模拟对断顶及未断顶巷道应力变化规律进行对比分析,断顶巷道端头最大垂直应力14.6 MPa,断顶后巷道端头最大垂直应力12.5 MPa,断顶后端头处垂直应力减小14%,断顶具有一定切断应力传递及减小巷道收缩的效果。开展现场工业性试验,断顶后端头顶底板位移减小37%,两帮变形减小19%,底臌发育长度减小92%,结果表明断顶可有效减少端头巷道变形以及超前底臌发育长度和高度,可为相似工程地质条件巷道建设提供参考。 展开更多
关键词 强采动 断顶卸压 巷道支护 软岩
下载PDF
大变形巷道限阻耗能型支护结构研究 被引量:1
20
作者 郑群 余国锋 +2 位作者 仇文革 陈昊喆 刘洋 《矿业安全与环保》 CAS 北大核心 2024年第2期118-126,共9页
为了解决深部煤矿开采过程中所遇到的“高地应力、大变形、支护结构破坏”等问题,以朱集东矿东部辅助轨道大巷为工程背景,采用变形监测与数值模拟的方法研究深井软岩巷道围岩变形特征规律;依据围岩耗能支护理念,设计出控制巷道围岩能量... 为了解决深部煤矿开采过程中所遇到的“高地应力、大变形、支护结构破坏”等问题,以朱集东矿东部辅助轨道大巷为工程背景,采用变形监测与数值模拟的方法研究深井软岩巷道围岩变形特征规律;依据围岩耗能支护理念,设计出控制巷道围岩能量释放与变形的“限制支护阻力阻尼器”(简称“限阻器”);通过数值分析与室内静压试验相结合的方式得到限阻器试件的性能指标与设计参数之间的关系,并验证限阻器的工作性能;最后通过数值模拟对比巷道常规支护与限阻耗能支护形式的变形与受力情况,验证巷道限阻耗能型支护方案的可行性。结果表明:限阻器的试验压缩量均达到了80%以上,具有较大的变形行程,在保证初期支护发生较大变形的前提下,达到降低围岩压力、耗散围岩能量的目的。限阻耗能支护较巷道常规支护最大主应力值分别降低51.2%、89.8%,提高了结构的安全性。 展开更多
关键词 深井软岩巷道 数值模拟 围岩耗能支护 限阻耗能型支护 限阻器
下载PDF
上一页 1 2 51 下一页 到第
使用帮助 返回顶部