期刊文献+
共找到152篇文章
< 1 2 8 >
每页显示 20 50 100
Neural Network-Based Adaptive Motion Control for a Mobile Robot with Unknown Longitudinal Slipping 被引量:8
1
作者 Gang Wang Xiaoping Liu +1 位作者 Yunlong Zhao Song Han 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2019年第4期26-34,共9页
When the mobile robot performs certain motion tasks in complex environment, wheel slipping inevitably occurs due to the wet or icy road and other reasons, thus directly influences the motion control accuracy. To addre... When the mobile robot performs certain motion tasks in complex environment, wheel slipping inevitably occurs due to the wet or icy road and other reasons, thus directly influences the motion control accuracy. To address unknown wheel longitudinal slipping problem for mobile robot, a RBF neural network approach based on whole model approximation is presented. The real-time data acquisition of inertial measure unit(IMU), encoders and other sensors is employed to get the mobile robot’s position and orientation in the movement, which is applied to compensate the unknown bounds of the longitudinal slipping using the adaptive technique. Both the simulation and experimental results prove that the control scheme possesses good practical performance and realize the motion control with unknown longitudinal slipping. 展开更多
关键词 Mobile robot Longitudinal slipping RBF neural network adaptive control
下载PDF
Adaptive RBF neural network control of robot with actuator nonlinearities 被引量:5
2
作者 Jinkun LIU, Yu LU (School of Automation Science and Electrical Engineering, Beijing University of Aeronautics and Astronautics, Beijing 100191, China) 《控制理论与应用(英文版)》 EI 2010年第2期249-256,共8页
In this paper, an adaptive neural network control scheme for robot manipulators with actuator nonlinearities is presented. The control scheme consists of an adaptive neural network controller and an actuator nonlinear... In this paper, an adaptive neural network control scheme for robot manipulators with actuator nonlinearities is presented. The control scheme consists of an adaptive neural network controller and an actuator nonlinearities compensator. Since the actuator nonlinearities are usually included in the robot driving motor, a compensator using radial basis function (RBF) network is proposed to estimate the actuator nonlinearities and eliminate their effects. Subsequently, an adaptive neural network controller that neither requires the evaluation of inverse dynamical model nor the time-consuming training process is given. In addition, GL matrix and its product operator are introduced to help prove the stability of the closed control system. Considering the adaptive neural network controller and the RBF network compensator as the whole control scheme, the closed-loop system is proved to be uniformly ultimately bounded (UUB). The whole scheme provides a general procedure to control the robot manipulators with actuator nonlinearities. Simulation results verify the effectiveness of the designed scheme and the theoretical discussion. 展开更多
关键词 adaptive control RBF neural network Actuator nonlinearity robot manipulator DEADZONE
下载PDF
Adaptive neural network control for coordinated motion of a dual-arm space robot system with uncertain parameters
3
作者 郭益深 陈力 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 2008年第9期1131-1140,共10页
Control of coordinated motion between the base attitude and the arm joints of a free-floating dual-arm space robot with uncertain parameters is discussed. By combining the relation of system linear momentum conversati... Control of coordinated motion between the base attitude and the arm joints of a free-floating dual-arm space robot with uncertain parameters is discussed. By combining the relation of system linear momentum conversation with the Lagrangian approach, the dynamic equation of a robot is established. Based on the above results, the free-floating dual-arm space robot system is modeled with RBF neural networks, the GL matrix and its product operator. With all uncertain inertial system parameters, an adaptive RBF neural network control scheme is developed for coordinated motion between the base attitude and the arm joints. The proposed scheme does not need linear parameterization of the dynamic equation of the system and any accurate prior-knowledge of the actual inertial parameters. Also it does not need to train the neural network offline so that it would present real-time and online applications. A planar free-floating dual-arm space robot is simulated to show feasibility of the proposed scheme. 展开更多
关键词 flee-floating dual-arm space robot RBF neural network GL matrix andits product operator coordinated motion adaptive control
下载PDF
Adaptive proportional integral differential control based on radial basis function neural network identification of a two-degree-of-freedom closed-chain robot
4
作者 陈正洪 王勇 李艳 《Journal of Shanghai University(English Edition)》 CAS 2008年第5期457-461,共5页
A closed-chain robot has several advantages over an open-chain robot, such as high mechanical rigidity, high payload, high precision. Accurate trajectory control of a robot is essential in practical-use. This paper pr... A closed-chain robot has several advantages over an open-chain robot, such as high mechanical rigidity, high payload, high precision. Accurate trajectory control of a robot is essential in practical-use. This paper presents an adaptive proportional integral differential (PID) control algorithm based on radial basis function (RBF) neural network for trajectory tracking of a two-degree-of-freedom (2-DOF) closed-chain robot. In this scheme, an RBF neural network is used to approximate the unknown nonlinear dynamics of the robot, at the same time, the PID parameters can be adjusted online and the high precision can be obtained. Simulation results show that the control algorithm accurately tracks a 2-DOF closed-chain robot trajectories. The results also indicate that the system robustness and tracking performance are superior to the classic PID method. 展开更多
关键词 closed-chain robot radial basis function (RBF) neural network adaptive proportional integral differential (PID) control identification neural network
下载PDF
A Novel Adaptive Neural Network Compensator as Applied to Position Control of a Pneumatic System 被引量:1
5
作者 Behrad Dehghan Sasan Taghizadeh +1 位作者 Brian Surgenor Mohammed Abu-Mallouh 《Intelligent Control and Automation》 2011年第4期388-395,共8页
Considerable research has been conducted on the control of pneumatic systems. However, nonlinearities continue to limit their performance. To compensate, advanced nonlinear and adaptive control strategies can be used.... Considerable research has been conducted on the control of pneumatic systems. However, nonlinearities continue to limit their performance. To compensate, advanced nonlinear and adaptive control strategies can be used. But the more successful advanced strategies typically need a mathematical model of the system to be controlled. The advantage of neural networks is that they do not require a model. This paper reports on a study whose objective is to explore the potential of a novel adaptive on-line neural network compensator (ANNC) for the position control of a pneumatic gantry robot. It was found that by combining ANNC with a traditional PID controller, tracking performance could be improved on the order of 45% to 70%. This level of performance was achieved after careful tuning of both the ANNC and PID components. The paper sets out to document the ANNC algorithm, the adopted tuning procedure, and presents experimental results that illustrate the adaptive nature of NN and confirms the performance achievable with ANNC. A major contribution is demonstration that tuning of ANNC requires no more effort than the tuning of PID. 展开更多
关键词 GANTRY robot Servopneumatics neural networks adaptive control PID control
下载PDF
Stable Adaptive Neural Control of a Robot Arm 被引量:1
6
作者 Salem Zerkaoui Saeed M. Badran 《Intelligent Control and Automation》 2012年第2期140-145,共6页
In this paper, stable indirect adaptive control with recurrent neural networks (RNN) is presented for square multivariable non-linear plants with unknown dynamics. The control scheme is made of an adaptive instantaneo... In this paper, stable indirect adaptive control with recurrent neural networks (RNN) is presented for square multivariable non-linear plants with unknown dynamics. The control scheme is made of an adaptive instantaneous neural model, a neural controller based on fully connected “Real-Time Recurrent Learning” (RTRL) networks and an online parameters updating law. Closed-loop performances as well as sufficient conditions for asymptotic stability are derived from the Lyapunov approach according to the adaptive updating rate parameter. Robustness is also considered in terms of sensor noise and model uncertainties. This control scheme is applied to the manipulator robot process in order to illustrate the efficiency of the proposed method for real-world control problems. 展开更多
关键词 adaptive control neural networks MULTIVARIABLE Systems Stability ROBUSTNESS LYAPUNOV Function MANIPULATOR robot
下载PDF
Robust adaptive control for a nonholonomic mobile robot with unknown parameters 被引量:9
7
作者 Jinbo WU Guohua XU Zhouping YIN 《控制理论与应用(英文版)》 EI 2009年第2期212-218,共7页
A robust adaptive controller for a nonholonomic mobile robot with unknown kinematic and dynamic parameters is proposed. A kinematic controller whose output is the input of the relevant dynamic controller is provided b... A robust adaptive controller for a nonholonomic mobile robot with unknown kinematic and dynamic parameters is proposed. A kinematic controller whose output is the input of the relevant dynamic controller is provided by using the concept of backstepping. An adaptive algorithm is developed in the kinematic controller to approximate the unknown kinematic parameters, and a simple single-layer neural network is used to express the highly nonlinear robot dynamics in terms of the known and unknown parameters. In order to attenuate the effects of the uncertainties and disturbances on tracking performance, a sliding mode control term is added to the dynamic controller. In the deterministic design of feedback controllers for the uncertain dynamic systems, upper bounds on the norm of the uncertainties are an important clue to guarantee the stability of the closed-loop system. However, sometimes these upper bounds may not be easily obtained because of the complexity of the structure of the uncertainties. Thereby, simple adaptation laws are proposed to approximate upper bounds on the norm of the uncertainties to address this problem. The stability of the proposed control system is shown through the Lyapunov method. Lastly, a design example for a mobile robot with two actuated wheels is provided and the feasibility of the controller is demonstrated by numerical simulations. 展开更多
关键词 Nonholonomic constraints Mobile robot Sliding mode control adaptive control ROBUSTNESS neural network
下载PDF
Dynamic Coordination of Uncalibrated Hand/Eye Robotic System Based on Neural Network 被引量:1
8
作者 Su, J. Pan, Q. Xi, Y. 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2001年第3期45-50,共6页
A nonlinear visual mapping model is presented to replace the image Jacobian relation for uncalibrated hand/eye coordination. A new visual tracking controller based on artificial neural network is designed. Simulation ... A nonlinear visual mapping model is presented to replace the image Jacobian relation for uncalibrated hand/eye coordination. A new visual tracking controller based on artificial neural network is designed. Simulation results show that this method can drive the static tracking error to zero quickly and keep good robustness and adaptability at the same time. In addition, the algorithm is very easy to be implemented with low computational complexity. 展开更多
关键词 adaptive algorithms Computational complexity Computer simulation Coordinate measuring machines Error detection Mathematical models neural networks robotic arms Robustness (control systems) Stereo vision
下载PDF
Adaptive-backstepping force/motion control for mobile-manipulator robot based on fuzzy CMAC neural networks 被引量:2
9
作者 Thang-Long MAI Yaonan WANG 《Control Theory and Technology》 EI CSCD 2014年第4期368-382,共15页
In this paper, an adaptive backstepping fuzzy cerebellar-model-articulation-control neural-networks control (ABFCNC) system for motion/force control of the mobile-manipulator robot (MMR) is proposed. By applying t... In this paper, an adaptive backstepping fuzzy cerebellar-model-articulation-control neural-networks control (ABFCNC) system for motion/force control of the mobile-manipulator robot (MMR) is proposed. By applying the ABFCNC in the tracking-position controller, the unknown dynamics and parameter variation problems of the MMR control system are relaxed. In addition, an adaptive robust compensator is proposed to eliminate uncertainties that consist of approximation errors, uncertain disturbances. Based on the tracking position-ABFCNC design, an adaptive robust control strategy is also developed for the nonholonomicconstraint force of the MMR. The design of adaptive-online learning algorithms is obtained by using the Lyapunov stability theorem. Therefore, the proposed method proves that it not only can guarantee the stability and robustness but also the tracking performances of the MMR control system. The effectiveness and robustness of the proposed control system are verified by comparative simulation results. 展开更多
关键词 Backstepping control Fuzzy CMAC (cerebellar model articulation controller) neural networks adaptive robustcontrol Mobile-manipulator robot
原文传递
Identification and Control of Flexible Joint Robot Using Multi-Time-Scale Neural Network
10
作者 ZHENG Dongdong LI Pengcheng +1 位作者 XIE Wenfang LI Dan 《Journal of Shanghai Jiaotong university(Science)》 EI 2020年第5期553-560,共8页
In this paper,a new identification and control scheme for the flexible joint robotic manipulator is proposed.Firstly,by defining some new state variables,the commonly used dynamic equations of the flexible joint robot... In this paper,a new identification and control scheme for the flexible joint robotic manipulator is proposed.Firstly,by defining some new state variables,the commonly used dynamic equations of the flexible joint robotic manipulators are transformed into the standard form of a singularly perturbed model.Subsequently,an optimal bounded ellipsoid algorithm based identification scheme using multi-time-scale neural network is proposed to identify the unknown system dynamic equations.Lastly,by using the singular perturbation theory,an indirect adaptive controller based on the identified model is proposed to control the system such that the joint angles can track the given reference signals.The closed-loop stability of the whole system is proved,and the effectiveness of the proposed schemes is verified by simulations. 展开更多
关键词 flexible joint robotic manipulator multi-time-scale neural network singular perturbation adaptive controller
原文传递
全状态约束下长行程混联机器人投影迭代鲁棒控制算法
11
作者 刘群坡 张卓然 +2 位作者 张建军 卜旭辉 孙蕊 《兵器装备工程学报》 CAS CSCD 北大核心 2024年第S01期322-332,共11页
针对全状态约束下的长行程混联机器人系统鲁棒性较差提出了基于自适应学习神经网络和等效误差函数的投影迭代鲁棒控制算法。基于自适应学习神经网络逼近未知的非线性项,提出投影迭代鲁棒控制算法,更新网络权值并估计逼近误差和随机外部... 针对全状态约束下的长行程混联机器人系统鲁棒性较差提出了基于自适应学习神经网络和等效误差函数的投影迭代鲁棒控制算法。基于自适应学习神经网络逼近未知的非线性项,提出投影迭代鲁棒控制算法,更新网络权值并估计逼近误差和随机外部扰动的未知上界;构造用于抵消初始时刻随机变化扩展误差的时变边界层,设计基于时变边界层和扩展误差的等效误差函数作为迭代控制器的主要控制变量以克服随机初始误差满足相同初始条件;在控制器设计中引入正切型障碍Lyapunov函数,确保系统状态在预定范围内。仿真实验结果证明了该方法的有效性,可在全状态约束下实现高精度强鲁棒性的轨迹跟踪。 展开更多
关键词 自适应迭代学习控制 长行程混联机器人 神经网络 随机初始误差 状态约束
下载PDF
神经网络阻尼比模型及工业机器人导纳控制
12
作者 党选举 牛嘉晨 《机械设计与制造》 北大核心 2024年第7期379-384,共6页
在工业机器人打磨过程中,环境刚度随未知环境的变化,将对力控制精度产生不利的影响,针对环境刚度变化的问题,该文提出一种基于神经网络阻尼比模型的自适应导纳控制方法。在导纳控制设计中,根据力误差与系统阻尼比之间的机理关系,设计激... 在工业机器人打磨过程中,环境刚度随未知环境的变化,将对力控制精度产生不利的影响,针对环境刚度变化的问题,该文提出一种基于神经网络阻尼比模型的自适应导纳控制方法。在导纳控制设计中,根据力误差与系统阻尼比之间的机理关系,设计激励函数,构造神经网络阻尼比模型;通过该模型使阻尼比在线调整,适应末端环境的刚度变化,实现力到位置自适应转换的导纳控制。与常规导纳控制进行仿真比较,结果表明所提出的力控制策略力误差更小,响应速度更快,能适应变刚度的未知打磨环境。 展开更多
关键词 未知环境 导纳控制 神经网络阻尼比模型 自适应控制 工业机器人
下载PDF
基于神经网络参数自学习的阻抗控制
13
作者 党选举 袁以坤 《组合机床与自动化加工技术》 北大核心 2024年第1期123-126,130,共5页
针对机器人在打磨过程中环境刚度和位置未知,传统的阻抗控制难以有效保持打磨质量的问题,提出了一种基于调节参数神经网络自学习的阻抗控制。由于基于李雅普诺夫稳定性理论设计的阻尼参数补偿方法中调节参数的选取直接影响系统的控制性... 针对机器人在打磨过程中环境刚度和位置未知,传统的阻抗控制难以有效保持打磨质量的问题,提出了一种基于调节参数神经网络自学习的阻抗控制。由于基于李雅普诺夫稳定性理论设计的阻尼参数补偿方法中调节参数的选取直接影响系统的控制性能,根据阻尼补偿的数学描述,构建神经网络,用于其参数自适应调节,设计不同的激励函数用于反映阻尼在多种因素影响下变化的特征。通过所搭建的神经网络在线学习,实现参数的优化,以适应打磨过程环境变化。在斜面、平面及曲面等不同环境下,考虑其刚度突变、刚度动态变化、期望力动态变化等因素的仿真实验,结果表明所提出的控制方法与传统控制方法相比,具有更小的超调和稳态误差,并能够适应环境参数未知的情况,明显提高打磨质量和效率。 展开更多
关键词 阻抗控制 工业机器人打磨 未知环境 变刚度 神经网络
下载PDF
Stewart平台神经网络非奇异终端滑模控制
14
作者 常光宇 陈志峰 +1 位作者 郭春雨 庞明 《智能系统学报》 CSCD 北大核心 2024年第2期353-359,共7页
针对Stewart平台的六自由度(six degrees of freedom,6-DOF)轨迹跟踪问题,提出一种基于神经网络的非奇异终端滑模控制方法并应用于Stewart平台的位置姿态控制中。通过分析Stewart平台的位置反解和速度反解,建立运动学方程,利用牛顿-欧... 针对Stewart平台的六自由度(six degrees of freedom,6-DOF)轨迹跟踪问题,提出一种基于神经网络的非奇异终端滑模控制方法并应用于Stewart平台的位置姿态控制中。通过分析Stewart平台的位置反解和速度反解,建立运动学方程,利用牛顿-欧拉方程建立动力学方程,并结合加速度反解得到了平台的状态空间表达式;基于非奇异滑模面函数,设计非奇异终端滑模控制律。考虑到径向基函数(radial Basis function,RBF)神经网络的逼近特性,采用RBF神经网络对模型未知部分进行自适应逼近,并利用Lyapunov第二法设计了自适应律;通过仿真证明控制器设计的有效性。仿真结果表明,相比于比例积分微分(proportional integral derivative,PID)控制器,提出的RBF神经网络非奇异终端滑模控制器具有更好的轨迹跟踪精度和动态特性。 展开更多
关键词 STEWART平台 并联机器人 动力学 滑模控制 自适应控制系统 神经网络 LYAPUNOV方法 非线性控制
下载PDF
Adaptive backstepping control of tracked robot running trajectory based on real-time slip parameter estimation
15
作者 En Lu Zheng Ma +2 位作者 Yaoming Li Lizhang Xu Zhong Tang 《International Journal of Agricultural and Biological Engineering》 SCIE EI CAS 2020年第4期178-187,共10页
To ensure the stable driving of tracked robots in a complex farmland environment,an adaptive backstepping control method for tracked robots was proposed based on real-time slip parameter estimation.According to the ki... To ensure the stable driving of tracked robots in a complex farmland environment,an adaptive backstepping control method for tracked robots was proposed based on real-time slip parameter estimation.According to the kinematics analysis method,the kinematic model of the tracked robot was established,and then,its pose error differential equation was further obtained.On this basis,the trajectory tracking controller of the tracked robot was designed based on the backstepping control theory.Subsequently,according to the trajectory tracking error of the tracked robot,the back propagation neural network(BPNN)was used to adaptively adjust the control parameters in the backstepping controller,and the inputs of the BPNN are the trajectory tracking error xe,ye,θe.After that,the soft-switching sliding mode observer(SSMO)was designed to identify the slip parameters during the running of the tracked robot.And then the parameters were compensated into the adaptive backstepping controller to reduce the trajectory tracking error.The simulation results show that the proposed adaptive backstepping control method with SSMO can improve the accuracy of the trajectory tracking control of the tracked robot.Additionally,the designed SSMO can accurately estimate the slip parameters. 展开更多
关键词 tracked robot trajectory control adaptive backstepping control neural networks slip parameter sliding mode observer
原文传递
变负载机械手轨迹跟踪控制器设计
16
作者 赵兴强 刘振 朱全民 《控制理论与应用》 EI CAS CSCD 北大核心 2024年第4期738-744,共7页
本文针对具有变负载的不确定刚性机械手系统,提出了一种依赖平均驻留时间的神经网络自适应切换控制策略.本控制方案将夹持不同负载的刚性机械手系统视为切换系统,即根据负载的不同将整个系统分为若干子系统,并基于平均驻留时间原则对每... 本文针对具有变负载的不确定刚性机械手系统,提出了一种依赖平均驻留时间的神经网络自适应切换控制策略.本控制方案将夹持不同负载的刚性机械手系统视为切换系统,即根据负载的不同将整个系统分为若干子系统,并基于平均驻留时间原则对每个子系统分别设计控制器.在各子系统中,分别采用径向基函数(RBF)神经网络逼近系统结构参数,以避免控制器对系统精确模型的依赖.同时,基于神经网络设计鲁棒补偿项,以抑制集总扰动对系统的影响.然后,利用多Lyapunov函数方法证明了轨迹跟踪误差的一致最终有界性.最后,通过仿真验证,所提出的控制方案不仅可实现变负载机械手期望轨迹的高精度跟踪,而且可有效削弱输入力矩的抖振. 展开更多
关键词 切换控制器 机械手 神经网络 平均驻留时间 自适应控制
下载PDF
基于RBF神经网络的闭链下肢康复机器人自适应补偿控制
17
作者 李东琦 秦建军 +2 位作者 孙茂琳 郑皓冉 李伟 《机械传动》 北大核心 2024年第4期60-68,共9页
在下肢康复机器人的康复训练过程中,模型参数、环境干扰等不确定性因素会影响机器人轨迹跟踪的精度。针对这一问题,提出了一种基于径向基函数(Radial Basis Function,RBF)神经网络的自适应补偿控制,该控制方法能够提高机械系统轨迹跟踪... 在下肢康复机器人的康复训练过程中,模型参数、环境干扰等不确定性因素会影响机器人轨迹跟踪的精度。针对这一问题,提出了一种基于径向基函数(Radial Basis Function,RBF)神经网络的自适应补偿控制,该控制方法能够提高机械系统轨迹跟踪的精确性。首先,设计一款具有4种工作模式、运动稳定的闭链卧式下肢康复机器人结构;然后,利用拉格朗日方法求解动力学名义模型,将康复装置的模型参数以及外界干扰等不确定性因素分离出来,并设计基于RBF神经网络的自适应补偿算法对其进行逼近控制;最后,通过Matlab/Simulink环境对其进行仿真验证,证明了该控制策略的有效性。结果显示,在人体步态曲线轨迹跟踪中,提出的基于RBF神经网络的自适应补偿算法相比传统的模糊比例-积分-微分(Proportional Integral Derivative,PID)控制的方法响应速度快、跟踪效果好,且髋关节和膝关节轨迹跟踪的角度误差峰值分别为0.08°和0.13°,远小于患者下肢在康复运动中的转动角度。设计了单腿样机试验,试验结果表明,采用的RBF补偿自适应控制器能够实现高精度的跟踪结果,也能够满足患者在康复训练中安全性的要求。 展开更多
关键词 下肢康复机器人 闭链结构 RBF神经网络 不确定性 自适应补偿控制
下载PDF
基于自适应神经网络的工业机器人双臂协同鲁棒控制
18
作者 贾英霞 王东辉 《现代制造工程》 CSCD 北大核心 2024年第6期61-68,共8页
为了克服机械摩擦、外界干扰和模型误差等不确定性对工业机器人双臂运动轨迹控制精度的影响,设计了一种基于自适应神经网络的工业机器人双臂协同鲁棒控制方法。首先,建立了带有各类不确定性的工业机器人双臂动力学模型;然后,通过构造障... 为了克服机械摩擦、外界干扰和模型误差等不确定性对工业机器人双臂运动轨迹控制精度的影响,设计了一种基于自适应神经网络的工业机器人双臂协同鲁棒控制方法。首先,建立了带有各类不确定性的工业机器人双臂动力学模型;然后,通过构造障碍Lyapunov函数设计了带有不确定性的协同控制律,并设计了自适应神经网络对系统中的不确定性进行估计,从而得到工业机器人双臂协同鲁棒控制律;最后,利用Lyapunov稳定性理论证明了设计的协同鲁棒控制律能够将工业机器人双臂的轨迹跟踪误差、速度跟踪误差和不确定性估计误差约束在一个任意小的邻域内。仿真结果表明,设计的自适应神经网络可准确估计出工业机器人双臂系统中的不确定性,最大估计误差仅为0.04 N·m,提出的协同鲁棒控制律能够稳定、准确地跟踪轨迹控制指令,最大轨迹跟踪误差仅为1.3 mm,从而验证了设计方法的合理性。在三维空间固定坐标定位测试中,提出的协同鲁棒控制律与其他几种方法相比具有更高的控制精度,平均定位误差和最大定位误差分别仅为1.1 mm和1.4 mm,表现出了更强的鲁棒性和更优的工程适用性。 展开更多
关键词 工业机器人 双机械臂 机械摩擦 模型误差 不确定性 自适应神经网络 协同鲁棒控制
下载PDF
基于RBF神经网络的双臂手术机器人自适应导纳控制
19
作者 张岩 胡陟 《中国医学物理学杂志》 CSCD 2024年第2期198-204,共7页
针对双臂机器人在辅助头颈部手术拉开软组织过程中环境刚度变化而导致的力跟踪误差较大问题,提出一种基于径向基函数(RBF)神经网络的自适应导纳控制策略,减小力跟踪误差,提升系统的响应速度。通过在手术过程中利用RBF神经网络在线调整... 针对双臂机器人在辅助头颈部手术拉开软组织过程中环境刚度变化而导致的力跟踪误差较大问题,提出一种基于径向基函数(RBF)神经网络的自适应导纳控制策略,减小力跟踪误差,提升系统的响应速度。通过在手术过程中利用RBF神经网络在线调整导纳参数,提高机械臂对不同接触条件和操作要求的适应性,实现快速精确的力跟踪。仿真实验将基于RBF神经网络的自适应导纳控制策略引入双臂力同步导纳控制系统并与传统定参数导纳控制对比,证明其在接触环境参数变化情况下的接触力控制效果。结果表明,基于RBF神经网络的自适应导纳控制策略可以有效提升双臂手术机器人力跟踪精度、响应速度以及抗干扰能力。 展开更多
关键词 自适应导纳控制 径向基函数 神经网络 双臂手术机器人 力跟踪
下载PDF
基于非零和博弈的自适应人机协作系统设计
20
作者 禹鑫燚 罗惠珍 +2 位作者 史栓武 魏岩 欧林林 《高技术通讯》 CAS 2023年第11期1181-1191,共11页
为了提高人机协作的协调性,本文设计了基于非零和博弈的自适应人机协作系统,系统由互相解耦的内外环构成。在外环中,通过引入非零和博弈的方法设计人机协作策略,构建关于人力和机器人控制输入的能量函数,通过求解博弈中的纳什均衡达到... 为了提高人机协作的协调性,本文设计了基于非零和博弈的自适应人机协作系统,系统由互相解耦的内外环构成。在外环中,通过引入非零和博弈的方法设计人机协作策略,构建关于人力和机器人控制输入的能量函数,通过求解博弈中的纳什均衡达到最优控制。针对能量函数中的不确定参数,采用神经网络估计器进行更新,以估计人和机器人的力。并且通过设计神经网络函数的中心值,获得机器人控制力与跟踪误差的关系,保证控制方法的跟踪性。在更新过程中自适应调整刚度系数,实现人机柔顺协调。另外,在内环中设计了神经网络控制器,采用径向基神经网络,基于实时采集的机器人系统输入输出数据逼近控制器中未知非线性的机器人动力学模型,提高了系统跟踪精度。仿真结果验证了本文方法的有效性。 展开更多
关键词 人机协作 自适应阻抗控制 非零和博弈 神经网络
下载PDF
上一页 1 2 8 下一页 到第
使用帮助 返回顶部