Robot programming by demonstration (PBD) system for task in which objectrequires contact with environment is built based on the controlling skill model. The skill isdescribed in three aspects: contact state classifier...Robot programming by demonstration (PBD) system for task in which objectrequires contact with environment is built based on the controlling skill model. The skill isdescribed in three aspects: contact state classifier, acquirement of contact states sequence andcontrolling transition between states. The classifier is developed with the support vector machineby using force sense. Sequence of states is obtained from the force signal of demonstration by theevent trigger. The velocity command of transition is achieved by linearization method. The PBDsystem is successfully built with robot controller with open architecture.展开更多
Off-line programming (OLP) system becomes one of the most important programming modules for the robotic belt grinding process, however there lacks research on increasing the grinding dexterous space depending on the...Off-line programming (OLP) system becomes one of the most important programming modules for the robotic belt grinding process, however there lacks research on increasing the grinding dexterous space depending on the OLP system. A new type of grinding robot and a novel robotic belt grinding workcell are forwarded, and their features are briefly introduced. An open and object-oriented off-line programming system is developed for this robotic belt grinding system. The parameters of the trimmed surface are read from the initial graphics exchange specification (IGES) file of the CAD model of the workpiece. The deBoor-Cox basis function is used to sample the grinding target with local contact frame on the workpiece. The numerical formula of inverse kinematics is set up based on Newton's iterative procedure, to calculate the grinding robot configurations corresponding to the grinding targets. After the grinding path is obtained, the OLP system turns to be more effective than the teach-by-showing system. In order to improve the grinding workspace, an optimization algorithm for dynamic tool frame is proposed and performed on the special robotic belt grinding system. The initial tool frame and the interval of neighboring tool frames are defined as the preparation of the algorithm. An optimized tool local frame can be selected to grind the complex surface for a maximum dexterity index of the robot. Under the optimization algorithm, a simulation of grinding a vane is included and comparison of grinding workspace is done before and after the tool frame optimization. By the algorithm, the grinding workspace can be enlarged. Moreover the dynamic tool frame can be considered to add one degree-of-freedom to the grinding kinematical chain, which provides the theoretical support for the improvement of robotic dexterity for the complex surface grinding.展开更多
With the rapid development of the robotic industry, domestic robots have become increasingly popular. As domestic robots are expected to be personal assistants, it is important to develop a natural language-based huma...With the rapid development of the robotic industry, domestic robots have become increasingly popular. As domestic robots are expected to be personal assistants, it is important to develop a natural language-based human-robot interactive system for end-users who do not necessarily have much programming knowledge. To build such a system, we developed an interactive tutoring framework, named " Holert”, which can translate task descriptions in natural language to machine-interpretable logical forms automatically. Compared to previous works, Holert allows users to teach the robot by further explaining their intentions in an interactive tutor mode. Furthermore, Holert introduces a semantic dependency model to enable the robot to " understand” similar task descriptions. We have deployed Holert on an open-source robot platform, Turtlebot 2. Experimental results show that the system accuracy could be significantly improved by 163.9% with the support of the tutor mode. This system is also efficient. Even the longest task session with 10 sentences can be handled within 0.7 s.展开更多
Optimal trajectory planning for robot manipulators plays an important role in implementing the high productivity for robots. The performance indexes used in optimal trajectory planning are classified into two main cat...Optimal trajectory planning for robot manipulators plays an important role in implementing the high productivity for robots. The performance indexes used in optimal trajectory planning are classified into two main categories: optimum traveling time and optimum mechanical energy of the actuators. The current trajectory planning algorithms are designed based on one of the above two performance indexes. So far, there have been few planning algorithms designed to satisfy two performance indexes simultaneously. On the other hand, some deficiencies arise in the existing integrated optimi2ation algorithms of trajectory planning. In order to overcome those deficiencies, the integrated optimization algorithms of trajectory planning are presented based on the complete analysis for trajectory planning of robot manipulators. In the algorithm, two object functions are designed based on the specific weight coefficient method and ' ideal point strategy. Moreover, based on the features of optimization problem, the intensified evolutionary programming is proposed to solve the corresponding optimization model. Especially, for the Stanford Robot,the high-quality solutions are found at a lower cost.展开更多
A certain number of considerations should be taken into account in the dynamic control of robot manipulators as highly complex non-linear systems.In this article,we provide a detailed presentation of the mechanical an...A certain number of considerations should be taken into account in the dynamic control of robot manipulators as highly complex non-linear systems.In this article,we provide a detailed presentation of the mechanical and electrical impli- cations of robots equipped with DC motor actuators.This model takes into account all non-linear aspects of the system.Then,we develop computational algorithms for optimal control based on dynamic programming.The robot's trajectory must be predefined,but performance criteria and constraints applying to the system are not limited and we may adapt them freely to the robot and the task being studied.As an example,a manipulator arm with 3 degrees of freedom is analyzed.展开更多
Off line programming provides an essential link between CAD and CAM, whose development will result in greater use of robotic arc welding. An arc welding system with a robot and a rotating/tilting positioner is one of...Off line programming provides an essential link between CAD and CAM, whose development will result in greater use of robotic arc welding. An arc welding system with a robot and a rotating/tilting positioner is one of the most typical workcells. The inverse kinematics of robot and positioner is the foundation of the off line programming system. The previous researchers only focused on a special solution of the positioner inverse kinematics, which is the solution at down hand welding position. In this paper, we introduce a method for representing welding position. Then a general algorithm of rotating/tilting positioner inverse kinematics is presented, and an approach to find the unique solution of the inverse kinematics is discussed. The simulation experiment results show that the general algorithm can improve the ability of robotic arc welding off line programming system to program all types of welding positions.展开更多
Geometric information is important for automatic programming of arc welding robot. Complete geometric models of robotic arc welding are established in this paper. In the geometric model of weld seam, an equation with ...Geometric information is important for automatic programming of arc welding robot. Complete geometric models of robotic arc welding are established in this paper. In the geometric model of weld seam, an equation with seam length as its parameter is introduced to represent any weld seam. The method to determine discrete programming points on a weld seam is presented. In the geometric model of weld workpiece, three class primitives and CSG tree are used to describe weld workpiece. Detailed data structure is presented. In pose transformation of torch, world frame, torch frame and active frame are defined, and transformation between frames is presented. Based on these geometric models, an automatic programming software package for robotic arc welding, RAWCAD, is developed. Experiments show that the geometric models are practical and reliable.展开更多
Transit gait programming is a key problem for a multi-legged robot to climb automatically from the ground up the wall, as well as between wall intersections. In this paper, a new idea is put forward by which the compl...Transit gait programming is a key problem for a multi-legged robot to climb automatically from the ground up the wall, as well as between wall intersections. In this paper, a new idea is put forward by which the complex transit gait is decomposed into a sequence of two relatively simpler parts - single-leg motion and body pitching motion. An algorithm based on the above concept shows its feasibility and effectiveness in the graphic kinematics simulation.展开更多
The motion simulation of arc welding robot is the basis of the system of robot off-line programming, and it has been one of the important research directions. The UGNX 4. 0 is adopted to establish 3D simulating model ...The motion simulation of arc welding robot is the basis of the system of robot off-line programming, and it has been one of the important research directions. The UGNX 4. 0 is adopted to establish 3D simulating model of MOTOMAN-HP6 arc welding robot. The kinematic model under link-pole coordinate system is established by the second development function offered by UG/OPEN API and the method of programming using VC ++ 6. 0. The methods of founding model and operational procedures are introduced, which provides a good basis for off-line programming technique under Unigraphies condition.展开更多
基金This project is supported by National Natural Science Foundation of China(No.6997S014) China 863 Robot Automatic Assembly Topic (No.863512972004).
文摘Robot programming by demonstration (PBD) system for task in which objectrequires contact with environment is built based on the controlling skill model. The skill isdescribed in three aspects: contact state classifier, acquirement of contact states sequence andcontrolling transition between states. The classifier is developed with the support vector machineby using force sense. Sequence of states is obtained from the force signal of demonstration by theevent trigger. The velocity command of transition is achieved by linearization method. The PBDsystem is successfully built with robot controller with open architecture.
基金supported by National Hi-tech Research and Development Program of China (863 Program, Grant No. 2007AA04Z2443)State Key Laboratory for Man ufacturing Systems Engineering of Xi’an Jiaotong University of China
文摘Off-line programming (OLP) system becomes one of the most important programming modules for the robotic belt grinding process, however there lacks research on increasing the grinding dexterous space depending on the OLP system. A new type of grinding robot and a novel robotic belt grinding workcell are forwarded, and their features are briefly introduced. An open and object-oriented off-line programming system is developed for this robotic belt grinding system. The parameters of the trimmed surface are read from the initial graphics exchange specification (IGES) file of the CAD model of the workpiece. The deBoor-Cox basis function is used to sample the grinding target with local contact frame on the workpiece. The numerical formula of inverse kinematics is set up based on Newton's iterative procedure, to calculate the grinding robot configurations corresponding to the grinding targets. After the grinding path is obtained, the OLP system turns to be more effective than the teach-by-showing system. In order to improve the grinding workspace, an optimization algorithm for dynamic tool frame is proposed and performed on the special robotic belt grinding system. The initial tool frame and the interval of neighboring tool frames are defined as the preparation of the algorithm. An optimized tool local frame can be selected to grind the complex surface for a maximum dexterity index of the robot. Under the optimization algorithm, a simulation of grinding a vane is included and comparison of grinding workspace is done before and after the tool frame optimization. By the algorithm, the grinding workspace can be enlarged. Moreover the dynamic tool frame can be considered to add one degree-of-freedom to the grinding kinematical chain, which provides the theoretical support for the improvement of robotic dexterity for the complex surface grinding.
基金supported by Tsinghua University Initiative Scientific Research Program(No.20141081140)
文摘With the rapid development of the robotic industry, domestic robots have become increasingly popular. As domestic robots are expected to be personal assistants, it is important to develop a natural language-based human-robot interactive system for end-users who do not necessarily have much programming knowledge. To build such a system, we developed an interactive tutoring framework, named " Holert”, which can translate task descriptions in natural language to machine-interpretable logical forms automatically. Compared to previous works, Holert allows users to teach the robot by further explaining their intentions in an interactive tutor mode. Furthermore, Holert introduces a semantic dependency model to enable the robot to " understand” similar task descriptions. We have deployed Holert on an open-source robot platform, Turtlebot 2. Experimental results show that the system accuracy could be significantly improved by 163.9% with the support of the tutor mode. This system is also efficient. Even the longest task session with 10 sentences can be handled within 0.7 s.
基金This work was supported in part by National Natural Science Foundation of China (No. 69975003) and Foundation for Dissertation of Ph. D. Candidate of Central South University (No.030618) .
文摘Optimal trajectory planning for robot manipulators plays an important role in implementing the high productivity for robots. The performance indexes used in optimal trajectory planning are classified into two main categories: optimum traveling time and optimum mechanical energy of the actuators. The current trajectory planning algorithms are designed based on one of the above two performance indexes. So far, there have been few planning algorithms designed to satisfy two performance indexes simultaneously. On the other hand, some deficiencies arise in the existing integrated optimi2ation algorithms of trajectory planning. In order to overcome those deficiencies, the integrated optimization algorithms of trajectory planning are presented based on the complete analysis for trajectory planning of robot manipulators. In the algorithm, two object functions are designed based on the specific weight coefficient method and ' ideal point strategy. Moreover, based on the features of optimization problem, the intensified evolutionary programming is proposed to solve the corresponding optimization model. Especially, for the Stanford Robot,the high-quality solutions are found at a lower cost.
文摘A certain number of considerations should be taken into account in the dynamic control of robot manipulators as highly complex non-linear systems.In this article,we provide a detailed presentation of the mechanical and electrical impli- cations of robots equipped with DC motor actuators.This model takes into account all non-linear aspects of the system.Then,we develop computational algorithms for optimal control based on dynamic programming.The robot's trajectory must be predefined,but performance criteria and constraints applying to the system are not limited and we may adapt them freely to the robot and the task being studied.As an example,a manipulator arm with 3 degrees of freedom is analyzed.
基金ThispaperissupportedbyNationalNatureScienceFoundation (No .5 96 35 16 0 )AdvancedUniversityDoctoralSubjectFoundation (No .980 2 1311)
文摘Off line programming provides an essential link between CAD and CAM, whose development will result in greater use of robotic arc welding. An arc welding system with a robot and a rotating/tilting positioner is one of the most typical workcells. The inverse kinematics of robot and positioner is the foundation of the off line programming system. The previous researchers only focused on a special solution of the positioner inverse kinematics, which is the solution at down hand welding position. In this paper, we introduce a method for representing welding position. Then a general algorithm of rotating/tilting positioner inverse kinematics is presented, and an approach to find the unique solution of the inverse kinematics is discussed. The simulation experiment results show that the general algorithm can improve the ability of robotic arc welding off line programming system to program all types of welding positions.
基金This paperis supported by National Nature Science Foundation! (No.5963 51 60 )Advanced University Doctoral Subject Foundatio
文摘Geometric information is important for automatic programming of arc welding robot. Complete geometric models of robotic arc welding are established in this paper. In the geometric model of weld seam, an equation with seam length as its parameter is introduced to represent any weld seam. The method to determine discrete programming points on a weld seam is presented. In the geometric model of weld workpiece, three class primitives and CSG tree are used to describe weld workpiece. Detailed data structure is presented. In pose transformation of torch, world frame, torch frame and active frame are defined, and transformation between frames is presented. Based on these geometric models, an automatic programming software package for robotic arc welding, RAWCAD, is developed. Experiments show that the geometric models are practical and reliable.
文摘Transit gait programming is a key problem for a multi-legged robot to climb automatically from the ground up the wall, as well as between wall intersections. In this paper, a new idea is put forward by which the complex transit gait is decomposed into a sequence of two relatively simpler parts - single-leg motion and body pitching motion. An algorithm based on the above concept shows its feasibility and effectiveness in the graphic kinematics simulation.
基金Natural Science Foundation of Tianjin(No.07JCYBJC04400).
文摘The motion simulation of arc welding robot is the basis of the system of robot off-line programming, and it has been one of the important research directions. The UGNX 4. 0 is adopted to establish 3D simulating model of MOTOMAN-HP6 arc welding robot. The kinematic model under link-pole coordinate system is established by the second development function offered by UG/OPEN API and the method of programming using VC ++ 6. 0. The methods of founding model and operational procedures are introduced, which provides a good basis for off-line programming technique under Unigraphies condition.