A novel three-module robot has been introduced. It can change its configuration to adapt to the uneven terrain and to improve its tipover stability. This three-module tracked robot has three kinds of symmetry configur...A novel three-module robot has been introduced. It can change its configuration to adapt to the uneven terrain and to improve its tipover stability. This three-module tracked robot has three kinds of symmetry configuration. They are line type, triangle type, and row type. After the factors and the countermeasures of mobile robot's tipover problem are analyzed, stability pyramid and tipover stabil-ity index are proposed to globally determinate the mobile robot's static stability and dynamic stability. The shape shifting robot is tested by this technique under the combined disturbance of pitch, roll and yaw in simulation. The simulation result shows that this technique is effective for the analysis of mobile robot's tipover stability, especially for the reconfigurable or shape shifting modular robot. Experiments on three symmetry configurations are made under unstructured environments. The environment experiment shows the same result as that of the simulation that the triangle type configuration has the best stability. Both simulation and experiment provide a valid reference for the reconfigurable robot's potential application.展开更多
The evaluation method on steering is based on qualitative manner in existence, which causes the result inaccurate and fuzziness. It reduces the efficiency of process execution. So the method by quantitative manner for...The evaluation method on steering is based on qualitative manner in existence, which causes the result inaccurate and fuzziness. It reduces the efficiency of process execution. So the method by quantitative manner for the shape-shifting robot in different configurations is proposed. Comparing to traditional evaluation method, the most important aspects which can influence the steering abilities of the robot in different configurations are researched in detail, including the energy, angular velocity, time and space. In order to improve the robustness of system, the ideal and slippage conditions are all considered by mathematical model. Comparing to the traditional weighting confirming method, the extent of robot steering method is proposed by the combination of subjective and objective weighting method. The subjective weighting method can show more preferences of the experts and is based on five-grade scale. The objective weighting method is based on information entropy to determine the factors. By the sensors fixed on the robot, the contract force between track grouser and ground, the intrinsic motion characteristics of robot are obtained and the experiment is done to prove the algorithm which is proposed as the robot in different common configurations. Through the method proposed in the article, fuzziness and inaccurate of the evaluation method has been solved, so the operators can choose the most suitable configuration of the robot to fulfil the different tasks more quickly and simply.展开更多
A portable shape-shifting mobile robot system named as Amoeba Ⅱ(A-Ⅱ) is developed for the urban search and rescue application. It is designed with three degrees of freedom and two tracked drive systems. This robot...A portable shape-shifting mobile robot system named as Amoeba Ⅱ(A-Ⅱ) is developed for the urban search and rescue application. It is designed with three degrees of freedom and two tracked drive systems. This robot consists of two modular mobile units and a joint unit. The mobile unit is a tracked mechanism to enforce the propulsion of robot. And the joint unit can transform the robot shape to get high environment adaptation. A-Ⅱ robot can not only adapt to the environment but also change its body shape according to the locus space. It behaves two work states including the linear state (named as I state) and the parallel state (named as Ⅱ state). With the linear state the robot can climb upstairs and go through narrow space such as the pipe, cave, etc. The parallel state enables the robot with high mobility on rough ground. Also, the joint unit can propel the robot to roll in sidewise direction. Two modular A-Ⅱ robots can be connected through jointing common interfaces on the joint unit to compose a stronger shape-shifting robot, which can transform the body into four wheels-driven vehicle. The experimental results validate the adaptation and mobility of A-Ⅱ robot.展开更多
Steering control of a capsule robot in curve environment by magnetic navigation is not yet solved completely.A petal-shaped capsule robot with less steering resistance based on multiple wedge effects is presented,and ...Steering control of a capsule robot in curve environment by magnetic navigation is not yet solved completely.A petal-shaped capsule robot with less steering resistance based on multiple wedge effects is presented,and an optimization method with two processes for determining the orientation of a pre-applied universal magnetic spin vector is proposed.To realize quick and non-contact steering swimming,a fuzzy comprehensive evaluation method for optimizing the steering driving angle is presented based on two evaluation indexes including the average steering speed and the average steering trajectory deviation,achieving the initial optimal orientation of a universal magnetic spin vector.To further reduce robotic magnetic vibration,a main target method for optimizing its final orientation,which is used for fine adjustment,is employed under the constrains of the magnetic moments.Swimming experimental results in curve pipe verified the effectiveness of the optimization method,which can be effectively used to realize non-contact steering swimming of the petal-shaped robot and reduce its vibration.展开更多
基金This project is supported by National Hi-Tech Research and Development Program of China(863 Program, No.2001AA422360) Chinese Academy of Sciences Advanced Manufacturing Technology R&D Base Foundation, Chrna(No.F000112).
文摘A novel three-module robot has been introduced. It can change its configuration to adapt to the uneven terrain and to improve its tipover stability. This three-module tracked robot has three kinds of symmetry configuration. They are line type, triangle type, and row type. After the factors and the countermeasures of mobile robot's tipover problem are analyzed, stability pyramid and tipover stabil-ity index are proposed to globally determinate the mobile robot's static stability and dynamic stability. The shape shifting robot is tested by this technique under the combined disturbance of pitch, roll and yaw in simulation. The simulation result shows that this technique is effective for the analysis of mobile robot's tipover stability, especially for the reconfigurable or shape shifting modular robot. Experiments on three symmetry configurations are made under unstructured environments. The environment experiment shows the same result as that of the simulation that the triangle type configuration has the best stability. Both simulation and experiment provide a valid reference for the reconfigurable robot's potential application.
基金Supported by National Key Technology R&D Program of China(Grant No.2014BAK12B01)
文摘The evaluation method on steering is based on qualitative manner in existence, which causes the result inaccurate and fuzziness. It reduces the efficiency of process execution. So the method by quantitative manner for the shape-shifting robot in different configurations is proposed. Comparing to traditional evaluation method, the most important aspects which can influence the steering abilities of the robot in different configurations are researched in detail, including the energy, angular velocity, time and space. In order to improve the robustness of system, the ideal and slippage conditions are all considered by mathematical model. Comparing to the traditional weighting confirming method, the extent of robot steering method is proposed by the combination of subjective and objective weighting method. The subjective weighting method can show more preferences of the experts and is based on five-grade scale. The objective weighting method is based on information entropy to determine the factors. By the sensors fixed on the robot, the contract force between track grouser and ground, the intrinsic motion characteristics of robot are obtained and the experiment is done to prove the algorithm which is proposed as the robot in different common configurations. Through the method proposed in the article, fuzziness and inaccurate of the evaluation method has been solved, so the operators can choose the most suitable configuration of the robot to fulfil the different tasks more quickly and simply.
基金National Natural Science Foundation of China(No. 60375029)National Hi-tech Research and Development Program of China(863 Program,No.2006AA04Z254)
文摘A portable shape-shifting mobile robot system named as Amoeba Ⅱ(A-Ⅱ) is developed for the urban search and rescue application. It is designed with three degrees of freedom and two tracked drive systems. This robot consists of two modular mobile units and a joint unit. The mobile unit is a tracked mechanism to enforce the propulsion of robot. And the joint unit can transform the robot shape to get high environment adaptation. A-Ⅱ robot can not only adapt to the environment but also change its body shape according to the locus space. It behaves two work states including the linear state (named as I state) and the parallel state (named as Ⅱ state). With the linear state the robot can climb upstairs and go through narrow space such as the pipe, cave, etc. The parallel state enables the robot with high mobility on rough ground. Also, the joint unit can propel the robot to roll in sidewise direction. Two modular A-Ⅱ robots can be connected through jointing common interfaces on the joint unit to compose a stronger shape-shifting robot, which can transform the body into four wheels-driven vehicle. The experimental results validate the adaptation and mobility of A-Ⅱ robot.
基金Supported by National Natural Science Foundation of China(Grant Nos.60875064,61175102,51277018)
文摘Steering control of a capsule robot in curve environment by magnetic navigation is not yet solved completely.A petal-shaped capsule robot with less steering resistance based on multiple wedge effects is presented,and an optimization method with two processes for determining the orientation of a pre-applied universal magnetic spin vector is proposed.To realize quick and non-contact steering swimming,a fuzzy comprehensive evaluation method for optimizing the steering driving angle is presented based on two evaluation indexes including the average steering speed and the average steering trajectory deviation,achieving the initial optimal orientation of a universal magnetic spin vector.To further reduce robotic magnetic vibration,a main target method for optimizing its final orientation,which is used for fine adjustment,is employed under the constrains of the magnetic moments.Swimming experimental results in curve pipe verified the effectiveness of the optimization method,which can be effectively used to realize non-contact steering swimming of the petal-shaped robot and reduce its vibration.