期刊文献+
共找到977篇文章
< 1 2 49 >
每页显示 20 50 100
Learning-based force servoing control of a robot with vision in an unknown environment 被引量:2
1
作者 XiaoNanfeng 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2004年第2期171-178,共8页
A learning-based control approach is presented for force servoing of a robot with vision in an unknown environment. Firstly, mapping relationships between image features of the servoing object and the joint angles of ... A learning-based control approach is presented for force servoing of a robot with vision in an unknown environment. Firstly, mapping relationships between image features of the servoing object and the joint angles of the robot are derived and learned by a neural network. Secondly, a learning controller based on the neural network is designed for the robot to trace the object. Thirdly, a discrete time impedance control law is obtained for the force servoing of the robot, the on-line learning algorithms for three neural networks are developed to adjust the impedance parameters of the robot in the unknown environment. Lastly, wiping experiments are carried out by using a 6 DOF industrial robot with a CCD camera and a force/torque sensor in its end effector, and the experimental results confirm the effecti veness of the approach. 展开更多
关键词 robotICS force servoing vision control learning algorithm neural network.
下载PDF
Adaptive state-constrained/model-free iterative sliding mode control for aerial robot trajectory tracking
2
作者 Chen AN Jiaxi ZHOU Kai WANG 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2024年第4期603-618,共16页
This paper develops a novel hierarchical control strategy for improving the trajectory tracking capability of aerial robots under parameter uncertainties.The hierarchical control strategy is composed of an adaptive sl... This paper develops a novel hierarchical control strategy for improving the trajectory tracking capability of aerial robots under parameter uncertainties.The hierarchical control strategy is composed of an adaptive sliding mode controller and a model-free iterative sliding mode controller(MFISMC).A position controller is designed based on adaptive sliding mode control(SMC)to safely drive the aerial robot and ensure fast state convergence under external disturbances.Additionally,the MFISMC acts as an attitude controller to estimate the unmodeled dynamics without detailed knowledge of aerial robots.Then,the adaption laws are derived with the Lyapunov theory to guarantee the asymptotic tracking of the system state.Finally,to demonstrate the performance and robustness of the proposed control strategy,numerical simulations are carried out,which are also compared with other conventional strategies,such as proportional-integralderivative(PID),backstepping(BS),and SMC.The simulation results indicate that the proposed hierarchical control strategy can fulfill zero steady-state error and achieve faster convergence compared with conventional strategies. 展开更多
关键词 aerial robot hierarchical control strategy model-free iterative sliding mode controller(MFISMC) trajectory tracking reinforcement learning
下载PDF
Seam Tracking and Visual Control for Robotic Arc Welding Based on Structured Light Stereovision 被引量:5
3
作者 De Xu, Min Tan, Xiaoguang Zhao, Zhiguo Tu Laboratory of Complex Systems and Intelligence Science, Institute of Automation, Chinese Academy of Sciences, Beijing 100080, PRC 《International Journal of Automation and computing》 EI 2004年第1期63-75,共13页
A real-time arc welding robot visual control system based on a local network with a multi-level hierarchy is developed in this paper. It consists of an intelligence and human-machine interface level, a motion planning... A real-time arc welding robot visual control system based on a local network with a multi-level hierarchy is developed in this paper. It consists of an intelligence and human-machine interface level, a motion planning level, a motion control level and a servo control level. The last three levels form a local real-time open robot controller, which realizes motion planning and motion control of a robot. A camera calibration method based on the relative movement of the end-effector connected to a robot is proposed and a method for tracking weld seam based on the structured light stereovision is provided. Combining the parameters of the cameras and laser plane, three groups of position values in Cartesian space are obtained for each feature point in a stripe projected on the weld seam. The accurate three-dimensional position of the edge points in the weld seam can be calculated from the obtained parameters with an information fusion algorithm. By calculating the weld seam parameter from position and image data, the movement parameters of the robot used for tracking can be determined. A swing welding experiment of type V groove weld is successfully conducted, the results of which show that the system has high resolution seam tracking in real-time, and works stably and efficiently. 展开更多
关键词 REAL time control visual control structured light vision camera and laser calibration weld seam tracking robotic arc welding
下载PDF
Iterative Learning Control for Distributed Parameter Systems Based on Non-Collocated Sensors and Actuators 被引量:4
4
作者 Jianxiang Zhang Baotong Cui +1 位作者 Xisheng Dai Zhengxian Jiang 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2020年第3期865-871,共7页
In this paper, an open-loop PD-type iterative learning control(ILC) scheme is first proposed for two kinds of distributed parameter systems(DPSs) which are described by parabolic partial differential equations using n... In this paper, an open-loop PD-type iterative learning control(ILC) scheme is first proposed for two kinds of distributed parameter systems(DPSs) which are described by parabolic partial differential equations using non-collocated sensors and actuators. Then, a closed-loop PD-type ILC algorithm is extended to a class of distributed parameter systems with a non-collocated single sensor and m actuators when the initial states of the system exist some errors. Under some given assumptions, the convergence conditions of output errors for the systems can be obtained. Finally, one numerical example for a distributed parameter system with a single sensor and two actuators is presented to illustrate the effectiveness of the proposed ILC schemes. 展开更多
关键词 Actuators distributed PARAMETER system ITERATIVE learning control PD-type ILC scheme sensors
下载PDF
Repetitive Learning Control for Time-varying Robotic Systems: A Hybrid Learning Scheme 被引量:11
5
作者 SUN Ming-Xuan HE Xiong-Xiong CHEN Bing-Yu 《自动化学报》 EI CSCD 北大核心 2007年第11期1189-1195,共7页
重复学习控制为不明确的变化时间的机器的系统追踪的 finite-time-trajectory 被介绍。在时间函数以一个反复的学习方法被学习的地方,一个混合学习计划被给在系统动力学应付经常、变化时间的 unknowns,没有泰勒表示的帮助,当常规微... 重复学习控制为不明确的变化时间的机器的系统追踪的 finite-time-trajectory 被介绍。在时间函数以一个反复的学习方法被学习的地方,一个混合学习计划被给在系统动力学应付经常、变化时间的 unknowns,没有泰勒表示的帮助,当常规微分学习方法为估计经常的被建议时。介绍重复学习控制为在每个周期的开始的起始的重新定位避免要求,是不同的,并且变化时间的 unknowns 不是必要的周期。随混合学习的采纳,靠近环的系统的州的变量的固定被保证,追踪的错误被保证作为重复增加收敛到零,这被显示出。建议计划的有效性通过数字模拟被表明。 展开更多
关键词 重复学习控制 机器人 时序变化系统 混合学习计划
下载PDF
Robotic Knee Tracking Control to Mimic the Intact Human Knee Profile Based on Actor-Critic Reinforcement Learning 被引量:2
6
作者 Ruofan Wu Zhikai Yao +1 位作者 Jennie Si He(Helen)Huang 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2022年第1期19-30,共12页
We address a state-of-the-art reinforcement learning(RL)control approach to automatically configure robotic pros-thesis impedance parameters to enable end-to-end,continuous locomotion intended for transfemoral amputee... We address a state-of-the-art reinforcement learning(RL)control approach to automatically configure robotic pros-thesis impedance parameters to enable end-to-end,continuous locomotion intended for transfemoral amputee subjects.Specifically,our actor-critic based RL provides tracking control of a robotic knee prosthesis to mimic the intact knee profile.This is a significant advance from our previous RL based automatic tuning of prosthesis control parameters which have centered on regulation control with a designer prescribed robotic knee profile as the target.In addition to presenting the tracking control algorithm based on direct heuristic dynamic programming(dHDP),we provide a control performance guarantee including the case of constrained inputs.We show that our proposed tracking control possesses several important properties,such as weight convergence of the learning networks,Bellman(sub)optimality of the cost-to-go value function and control input,and practical stability of the human-robot system.We further provide a systematic simulation of the proposed tracking control using a realistic human-robot system simulator,the OpenSim,to emulate how the dHDP enables level ground walking,walking on different terrains and at different paces.These results show that our proposed dHDP based tracking control is not only theoretically suitable,but also practically useful. 展开更多
关键词 Automatic tracking of intact knee configuration of robotic knee prosthesis direct heuristic dynamic programming(dHDP) reinforcement learning control
下载PDF
Vision-based Stabilization of Nonholonomic Mobile Robots by Integrating Sliding-mode Control and Adaptive Approach 被引量:4
7
作者 CAO Zhengcai YIN Longjie FU Yili 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2013年第1期21-28,共8页
Vision-based pose stabilization of nonholonomic mobile robots has received extensive attention. At present, most of the solutions of the problem do not take the robot dynamics into account in the controller design, so... Vision-based pose stabilization of nonholonomic mobile robots has received extensive attention. At present, most of the solutions of the problem do not take the robot dynamics into account in the controller design, so that these controllers are difficult to realize satisfactory control in practical application. Besides, many of the approaches suffer from the initial speed and torque jump which are not practical in the real world. Considering the kinematics and dynamics, a two-stage visual controller for solving the stabilization problem of a mobile robot is presented, applying the integration of adaptive control, sliding-mode control, and neural dynamics. In the first stage, an adaptive kinematic stabilization controller utilized to generate the command of velocity is developed based on Lyapunov theory. In the second stage, adopting the sliding-mode control approach, a dynamic controller with a variable speed function used to reduce the chattering is designed, which is utilized to generate the command of torque to make the actual velocity of the mobile robot asymptotically reach the desired velocity. Furthermore, to handle the speed and torque jump problems, the neural dynamics model is integrated into the above mentioned controllers. The stability of the proposed control system is analyzed by using Lyapunov theory. Finally, the simulation of the control law is implemented in perturbed case, and the results show that the control scheme can solve the stabilization problem effectively. The proposed control law can solve the speed and torque jump problems, overcome external disturbances, and provide a new solution for the vision-based stabilization of the mobile robot. 展开更多
关键词 nonholonomic mobile robots vision-based stabilization sliding-mode control adaptive control neural dynamics
下载PDF
Vision Navigation Based PID Control for Line Tracking Robot 被引量:1
8
作者 Rihem Farkh Khaled Aljaloud 《Intelligent Automation & Soft Computing》 SCIE 2023年第1期901-911,共11页
In a controlled indoor environment,line tracking has become the most practical and reliable navigation strategy for autonomous mobile robots.A line tracking robot is a self-mobile machine that can recognize and track ... In a controlled indoor environment,line tracking has become the most practical and reliable navigation strategy for autonomous mobile robots.A line tracking robot is a self-mobile machine that can recognize and track a painted line on thefloor.In general,the path is set and can be visible,such as a black line on a white surface with high contrasting colors.The robot’s path is marked by a distinct line or track,which the robot follows to move.Several scientific contributions from the disciplines of vision and control have been made to mobile robot vision-based navigation.Localization,automated map generation,autonomous navigation and path tracking is all becoming more frequent in vision applications.A visual navigation line tracking robot should detect the line with a camera using an image processing technique.The paper focuses on combining computer vision techniques with a proportional-integral-derivative(PID)control-ler for automatic steering and speed control.A prototype line tracking robot is used to evaluate the proposed control strategy. 展开更多
关键词 Line tracking robot vision navigation PID control image processing OPENCV raspberry pi
下载PDF
Robust Iterative Learning Controller for the Non-zero Initial Error Problem on Robot Manipulator
9
作者 TAO Li-li 1,YANG Fu-wen 2 (1. Department of Automation, University of Xiamen, Xiamen 361005, Chi na 2. Department of Electrical Engineering, University of Fuzhou, Fuzhou 350002, C hina) 《厦门大学学报(自然科学版)》 CAS CSCD 北大核心 2002年第S1期-,共2页
Industrial robot system is a kind of dynamic system w ith strong nonlinear coupling and high position precision. A lot of control ways , such as nonlinear feedbackdecomposition motion and adaptive control and so o n, ... Industrial robot system is a kind of dynamic system w ith strong nonlinear coupling and high position precision. A lot of control ways , such as nonlinear feedbackdecomposition motion and adaptive control and so o n, have been used to control this kind of system, but there are some deficiencie s in those methods: some need accurate and some need complicated operation and e tc. In recent years, in need of controlling the industrial robots, aiming at com pletely tracking the ideal input for the controlled subject with repetitive character, a new research area, ILC (iterative learning control), has been devel oped in the control technology and theory. The iterative learning control method can make the controlled subject operate as desired in a definite time span, merely making use of the prior control experie nce of the system and searching for the desired control signal according to the practical and desired output signal. The process of searching is equal to that o f learning, during which we only need to measure the output signal to amend the control signal, not like the adaptive control strategy, which on line assesses t he complex parameters of the system. Besides, since the iterative learning contr ol relies little on the prior message of the subject, it has been well used in a lot of areas, especially the dynamic systems with strong non-linear coupling a nd high repetitive position precision and the control system with batch producti on. Since robot manipulator has the above-mentioned character, ILC can be very well used in robot manipulator. In the ILC, since the operation always begins with a certain initial state, init ial condition has been required in almost all convergence verification. Therefor e, in designing the controller, the initial state has to be restricted with some condition to guarantee the convergence of the algorithm. The settle of initial condition problem has long been pursued in the ILC. There are commonly two kinds of initial condition problems: one is zero initial error problem, another is non-zero initial error problem. In practice, the repe titive operation will invariably produce excursion of the iterative initial stat e from the desired initial state. As a result, the research on the second in itial problem has more practical meaning. In this paper, for the non-zero initial error problem, one novel robust ILC alg orithms, respectively combining PD type iterative learning control algorithm wit h the robust feedback control algorithm, has been presented. This novel robust ILC algorithm contain two parts: feedforward ILC algorithm and robust feedback algorithm, which can be used to restrain disturbance from param eter variation, mechanical nonlinearities and unmodeled dynamics and to achieve good performance as well. The feedforward ILC algorithm can be used to improve the tracking error and perf ormance of the system through iteratively learning from the previous operation, thus performing the tracking task very fast. The robust feedback algorithm could mainly be applied to make the real output of the system not deviate too much fr om the desired tracking trajectory, and guarantee the system’s robustness w hen there are exterior noises and variations of the system parameter. In this paper, in order to analyze the convergence of the algorithm, Lyapunov st ability theory has been used through properly selecting the Lyapunov function. T he result of the verification shows the feasibility of the novel robust iterativ e learning control in theory. Finally, aiming at the two-freedom rate robot, simulation has been made with th e MATLAB software. Furthermore, two groups of parameters are selected to validat e the robustness of the algorithm. 展开更多
关键词 robust control iterative learning control non- zero initial error robot manipulator
下载PDF
Adaptive learning tracking control of robotic manipulators with uncertainties
10
作者 Keng Peng TEE 《控制理论与应用(英文版)》 EI 2010年第2期160-165,共6页
An adaptive learning tracking control scheme is developed for robotic manipulators by a synthesis of adaptive control and learning control approaches. The proposed controller possesses both adaptive and learning prope... An adaptive learning tracking control scheme is developed for robotic manipulators by a synthesis of adaptive control and learning control approaches. The proposed controller possesses both adaptive and learning properties and thereby is able to handle robotic systems with both time-varying periodic uncertainties and time invariant parameters. Theoretical proofs are established to show that proposed controllers ensure asymptotical tracking performance. The effectiveness of the proposed approaches is validated through extensive numerical simulation results. 展开更多
关键词 Adaptive control learning control robotic dynamic systems UNCERTAINTIES
下载PDF
9th International Conference on Control, Automation, Robotics and Vision ICARCV 2006
11
《控制理论与应用》 EI CAS CSCD 北大核心 2006年第1期157-157,共1页
关键词 vision robotics and vision ICARCV 2006 Man AUTOMATION International Conference on control
下载PDF
Learning control of nonhonolomic robot based on support vector machine
12
作者 冯勇 葛运建 +1 位作者 曹会彬 孙玉香 《Journal of Central South University》 SCIE EI CAS 2012年第12期3400-3406,共7页
A learning controller of nonhonolomic robot in real-time based on support vector machine(SVM)is presented.The controller includes two parts:one is kinematic controller based on nonlinear law,and the other is dynamic c... A learning controller of nonhonolomic robot in real-time based on support vector machine(SVM)is presented.The controller includes two parts:one is kinematic controller based on nonlinear law,and the other is dynamic controller based on SVM.The kinematic controller is aimed to provide desired velocity which can make the steering system stable.The dynamic controller is aimed to transform the desired velocity to control torque.The parameters of the dynamic system of the robot are estimated through SVM learning algorithm according to the training data of sliding windows in real time.The proposed controller can adapt to the changes in the robot model and uncertainties in the environment.Compared with artificial neural network(ANN)controller,SVM controller can converge to the reference trajectory more quickly and the tracking error is smaller.The simulation results verify the effectiveness of the method proposed. 展开更多
关键词 nonhonolomic robot learning control support vector machine nonlinear control law dynamic control
下载PDF
Homeostasis Lighting Control System Using a Sensor Agent Robot
13
作者 Tatsuya Akiba Akira Mita 《Intelligent Control and Automation》 2013年第2期138-153,共16页
In this study, “homeostasis”, the function by which living things keep their constancy, was emulated as a lighting control for a building space. The algorithm we developed mimics the mechanisms of the endocrine and ... In this study, “homeostasis”, the function by which living things keep their constancy, was emulated as a lighting control for a building space. The algorithm we developed mimics the mechanisms of the endocrine and immune systems. The endocrine system transmits information entirely, whereas the immune system transmits information with a concentration gradient. A lighting control system using the proposed algorithm was evaluated in a simulation and experiment using a sensor agent robot. In this algorithm, a robot recognizes a person’s behavior and uses it to decide his or her preference as to the illuminance. The results indicate that the algorithm can be used to realize a comfortable lighting control in several situations. 展开更多
关键词 HOMEOSTASIS LIGHTING control sensor AGENT robot Human TRACKING
下载PDF
Intelligent Control of Mobile Robot with Redundant Manipulator & Stereovision: Quantum / Soft Computing Toolkit
14
作者 Kirill V.Koshelev Alena V.Nikolaeva +1 位作者 Andrey G.Reshetnikov Sergey V.Ulyanov 《Artificial Intelligence Advances》 2020年第2期1-31,共31页
The task of an intelligent control system design applying soft and quantum computational intelligence technologies discussed.An example of a control object as a mobile robot with redundant robotic manipulator and ster... The task of an intelligent control system design applying soft and quantum computational intelligence technologies discussed.An example of a control object as a mobile robot with redundant robotic manipulator and stereovision introduced.Design of robust knowledge bases is performed using a developed computational intelligence-quantum/soft computing toolkit(QC/SCOptKBTM).The knowledge base self-organization process of fuzzy homogeneous regulators through the application of end-to-end IT of quantum computing described.The coordination control between the mobile robot and redundant manipulator with stereovision based on soft computing described.The general design methodology of a generalizing control unit based on the physical laws of quantum computing(quantum information-thermodynamic trade-off of control quality distribution and knowledge base self-organization goal)is considered.The modernization of the pattern recognition system based on stereo vision technology presented.The effectiveness of the proposed methodology is demonstrated in comparison with the structures of control systems based on soft computing for unforeseen control situations with sensor system.The main objective of this article is to demonstrate the advantages of the approach based on quantum/soft computing. 展开更多
关键词 Quantum/Soft computing optimizer Knowledge base Fuzzy controller Quantum fuzzy inference Multi-agent systems Mobile robot stereo vision
下载PDF
Iterative Learning Control Algorithm with a Fixed Step 被引量:4
15
作者 WANG Yan NIU Jianjun 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2011年第4期669-675,共7页
Iterative Learning Control (ILC) captures interests of many scholars because of its capability of high precision control implement without identifying plant mathematical models, and it is widely applied in control e... Iterative Learning Control (ILC) captures interests of many scholars because of its capability of high precision control implement without identifying plant mathematical models, and it is widely applied in control engineering. Presently, most ILC algorithms still follow the original ideas of ARIMOTO, in which the iterative-learning-rate is composed by the control error with its derivative and integral values. This kind of algorithms will result in inevitable problems such as huge computation, big storage capacity for algorithm data, and also weak robust. In order to resolve these problems, an improved iterative learning control algorithm with fixed step is proposed here which breaks the primary thought of ARIMOTO. In this algorithm, the control step is set only according to the value of the control error, which could enormously reduce the computation and storage size demanded, also improve the robust of the algorithm by not using the differential coefficient of the iterative learning error. In this paper, the convergence conditions of this proposed fixed step iterative learning algorithm is theoretically analyzed and testified. Then the algorithm is tested through simulation researches on a time-variant object with randomly set disturbance through calculation of step threshold value, algorithm robustness testing,and evaluation of the relation between convergence speed and step size. Finally the algorithm is validated on a valve-serving-cylinder system of a joint robot with time-variant parameters. Experiment results demonstrate the stability of the algorithm and also the relationship between step value and convergence rate. Both simulation and experiment testify the feasibility and validity of the new algorithm proposed here. And it is worth to noticing that this algorithm is simple but with strong robust after improvements, which provides new ideas to the research of iterative learning control algorithms. 展开更多
关键词 iterative learning control fixed step time variant system simulating study robot control
下载PDF
A Real Time Self-Tuning Motion Controller for Mobile Robot Systems 被引量:6
16
作者 Mohamed Boukens Abdelkrim Boukabou Mohammed Chadli 《IEEE/CAA Journal of Automatica Sinica》 EI CSCD 2019年第1期84-96,共13页
This paper proposes an intelligent controller for motion control of robotic systems to obtain high precision tracking without the need for a real-time trial and error method.In addition, a new self-tuning algorithm ha... This paper proposes an intelligent controller for motion control of robotic systems to obtain high precision tracking without the need for a real-time trial and error method.In addition, a new self-tuning algorithm has been developed based on both the ant colony algorithm and a fuzzy system for real-time tuning of controller parameters. Simulations and experiments using a real robot have been addressed to demonstrate the success of the proposed controller and validate the theoretical analysis. Obtained results confirm that the proposed controller ensures robust performance in the presence of disturbances and parametric uncertainties without the need for adjustment of control law parameters by a trial and error method. 展开更多
关键词 learning and adaptive SYSTEMS motion control METAHEURISTIC robust control real-time tuning SELF-TUNING WHEELED mobile robot
下载PDF
Fault Detection for Motor Drive Control System of Industrial Robots Using CNN-LSTM-based Observers 被引量:2
17
作者 Tao Wang Le Zhang Xuefei Wang 《CES Transactions on Electrical Machines and Systems》 CSCD 2023年第2期144-152,共9页
The complex working conditions and nonlinear characteristics of the motor drive control system of industrial robots make it difficult to detect faults.In this paper,a deep learning-based observer,which combines the co... The complex working conditions and nonlinear characteristics of the motor drive control system of industrial robots make it difficult to detect faults.In this paper,a deep learning-based observer,which combines the convolutional neural network(CNN)and the long short-term memory network(LSTM),is employed to approximate the nonlinear driving control system.CNN layers are introduced to extract dynamic features of the data,whereas LSTM layers perform time-sequential prediction of the target system.In terms of application,normal samples are fed into the observer to build an offline prediction model for the target system.The trained CNN-LSTM-based observer is then deployed along with the target system to estimate the system outputs.Online fault detection can be realized by analyzing the residuals.Finally,an application of the proposed fault detection method to a brushless DC motor drive system is given to verify the effectiveness of the proposed scheme.Simulation results indicate the impressive fault detection capability of the presented method for driving control systems of industrial robots. 展开更多
关键词 Fault detection Motor drive control system Deep learning CNN-LSTM Industrial robot
下载PDF
DSP & FPGA-based control architecture for a highly integrated robot hand with enhanced impedance performance 被引量:1
18
作者 吴克 Lan Tian +5 位作者 Chen Yangbin Liu Yiwei Jin Minghe Fan Shaowei Chen Zhaopeng Liu Hong 《High Technology Letters》 EI CAS 2010年第2期178-183,共6页
A novel control system is developed to improve the capabilities of robet hand performing tasks in a variety of environments. A joint impedance control strategy has been successfully implemented in the low level contro... A novel control system is developed to improve the capabilities of robet hand performing tasks in a variety of environments. A joint impedance control strategy has been successfully implemented in the low level control of a highly integrated robot hand. At flint, a real time controller with DSP&FPGA-based multilevel control architecture is built. Then a current sensor of the single direct current (DC) link is used to measure and reconstruct the three phase currents, and a stable current signal is measured by optimizing sample instant. The experimental results of the joint impedance control show that the proposed method not only improves the effectiveness of contact environment performance, but also provides compliant interaction of robot hand with a person, which is very important for the development of friendly human robot of the next generation. 展开更多
关键词 impedance control DSP FPGA direct current (DC) link current sensor robot hand control system
下载PDF
Iterative sliding mode control strategy of robotic arm based on fractional calculus
19
作者 ZHANG Xin LU Wenru +2 位作者 MIAO Zhongcui JIANG Ziyun ZHANG Jing 《Journal of Measurement Science and Instrumentation》 CAS CSCD 2021年第2期208-217,共10页
In order to improve the control performance of industrial robotic arms,an efficient fractional-order iterative sliding mode control method is proposed by combining fractional calculus theory with iterative learning co... In order to improve the control performance of industrial robotic arms,an efficient fractional-order iterative sliding mode control method is proposed by combining fractional calculus theory with iterative learning control and sliding mode control.In the design process of the controller,fractional approaching law and fractional sliding mode control theories are used to introduce fractional calculus into iterative sliding mode control,and Lyapunov theory is used to analyze the system stability.Then taking a two-joint robotic arm as an example,the proposed control strategy is verified by MATLAB simulation.The simulation experiments show that the fractional-order iterative sliding mode control strategy can effectively improve the tracking speed and tracking accuracy of the joint,reduce the tracking error,have strong robustness and effectively suppress the chattering phenomenon of sliding mode control. 展开更多
关键词 robotic arm fractional calculus iterative learning control sliding mode control
下载PDF
Visual Feedback Balance Control of a Robot Manipulator and Ball-Beam System
20
作者 Ching-Long Shih Jung-Hsien Hsu Chi-Jen Chang 《Journal of Computer and Communications》 2017年第9期8-18,共11页
In this paper, we present a vision guided robotic ball-beam balancing control system, consisting of a robot manipulator (actuator), a ball-beam system (plant) and a machine vision system (feedback). The machine vision... In this paper, we present a vision guided robotic ball-beam balancing control system, consisting of a robot manipulator (actuator), a ball-beam system (plant) and a machine vision system (feedback). The machine vision system feedbacks real-time beam angle and ball position data at a speed of 50 frames per second. Based on feedback data, the end-effector of a robot manipulator is driven to control the ball position by maneuvering of the inclination angle of the ball-beam system. The overall control system is implemented with two FPGA chips, one for machine vision processing, and one for robot joints servo PID controllers as well as ball position PD controller. Experiments are performed on a 5-axes robot manipulator to validate the proposed ball beam balancing control system. 展开更多
关键词 Ball-Beam System robot MANIPULATOR vision FEEDBACK control PID/PD control FPGA
下载PDF
上一页 1 2 49 下一页 到第
使用帮助 返回顶部