A learning-based control approach is presented for force servoing of a robot with vision in an unknown environment. Firstly, mapping relationships between image features of the servoing object and the joint angles of ...A learning-based control approach is presented for force servoing of a robot with vision in an unknown environment. Firstly, mapping relationships between image features of the servoing object and the joint angles of the robot are derived and learned by a neural network. Secondly, a learning controller based on the neural network is designed for the robot to trace the object. Thirdly, a discrete time impedance control law is obtained for the force servoing of the robot, the on-line learning algorithms for three neural networks are developed to adjust the impedance parameters of the robot in the unknown environment. Lastly, wiping experiments are carried out by using a 6 DOF industrial robot with a CCD camera and a force/torque sensor in its end effector, and the experimental results confirm the effecti veness of the approach.展开更多
This paper develops a novel hierarchical control strategy for improving the trajectory tracking capability of aerial robots under parameter uncertainties.The hierarchical control strategy is composed of an adaptive sl...This paper develops a novel hierarchical control strategy for improving the trajectory tracking capability of aerial robots under parameter uncertainties.The hierarchical control strategy is composed of an adaptive sliding mode controller and a model-free iterative sliding mode controller(MFISMC).A position controller is designed based on adaptive sliding mode control(SMC)to safely drive the aerial robot and ensure fast state convergence under external disturbances.Additionally,the MFISMC acts as an attitude controller to estimate the unmodeled dynamics without detailed knowledge of aerial robots.Then,the adaption laws are derived with the Lyapunov theory to guarantee the asymptotic tracking of the system state.Finally,to demonstrate the performance and robustness of the proposed control strategy,numerical simulations are carried out,which are also compared with other conventional strategies,such as proportional-integralderivative(PID),backstepping(BS),and SMC.The simulation results indicate that the proposed hierarchical control strategy can fulfill zero steady-state error and achieve faster convergence compared with conventional strategies.展开更多
A real-time arc welding robot visual control system based on a local network with a multi-level hierarchy is developed in this paper. It consists of an intelligence and human-machine interface level, a motion planning...A real-time arc welding robot visual control system based on a local network with a multi-level hierarchy is developed in this paper. It consists of an intelligence and human-machine interface level, a motion planning level, a motion control level and a servo control level. The last three levels form a local real-time open robot controller, which realizes motion planning and motion control of a robot. A camera calibration method based on the relative movement of the end-effector connected to a robot is proposed and a method for tracking weld seam based on the structured light stereovision is provided. Combining the parameters of the cameras and laser plane, three groups of position values in Cartesian space are obtained for each feature point in a stripe projected on the weld seam. The accurate three-dimensional position of the edge points in the weld seam can be calculated from the obtained parameters with an information fusion algorithm. By calculating the weld seam parameter from position and image data, the movement parameters of the robot used for tracking can be determined. A swing welding experiment of type V groove weld is successfully conducted, the results of which show that the system has high resolution seam tracking in real-time, and works stably and efficiently.展开更多
In this paper, an open-loop PD-type iterative learning control(ILC) scheme is first proposed for two kinds of distributed parameter systems(DPSs) which are described by parabolic partial differential equations using n...In this paper, an open-loop PD-type iterative learning control(ILC) scheme is first proposed for two kinds of distributed parameter systems(DPSs) which are described by parabolic partial differential equations using non-collocated sensors and actuators. Then, a closed-loop PD-type ILC algorithm is extended to a class of distributed parameter systems with a non-collocated single sensor and m actuators when the initial states of the system exist some errors. Under some given assumptions, the convergence conditions of output errors for the systems can be obtained. Finally, one numerical example for a distributed parameter system with a single sensor and two actuators is presented to illustrate the effectiveness of the proposed ILC schemes.展开更多
We address a state-of-the-art reinforcement learning(RL)control approach to automatically configure robotic pros-thesis impedance parameters to enable end-to-end,continuous locomotion intended for transfemoral amputee...We address a state-of-the-art reinforcement learning(RL)control approach to automatically configure robotic pros-thesis impedance parameters to enable end-to-end,continuous locomotion intended for transfemoral amputee subjects.Specifically,our actor-critic based RL provides tracking control of a robotic knee prosthesis to mimic the intact knee profile.This is a significant advance from our previous RL based automatic tuning of prosthesis control parameters which have centered on regulation control with a designer prescribed robotic knee profile as the target.In addition to presenting the tracking control algorithm based on direct heuristic dynamic programming(dHDP),we provide a control performance guarantee including the case of constrained inputs.We show that our proposed tracking control possesses several important properties,such as weight convergence of the learning networks,Bellman(sub)optimality of the cost-to-go value function and control input,and practical stability of the human-robot system.We further provide a systematic simulation of the proposed tracking control using a realistic human-robot system simulator,the OpenSim,to emulate how the dHDP enables level ground walking,walking on different terrains and at different paces.These results show that our proposed dHDP based tracking control is not only theoretically suitable,but also practically useful.展开更多
Vision-based pose stabilization of nonholonomic mobile robots has received extensive attention. At present, most of the solutions of the problem do not take the robot dynamics into account in the controller design, so...Vision-based pose stabilization of nonholonomic mobile robots has received extensive attention. At present, most of the solutions of the problem do not take the robot dynamics into account in the controller design, so that these controllers are difficult to realize satisfactory control in practical application. Besides, many of the approaches suffer from the initial speed and torque jump which are not practical in the real world. Considering the kinematics and dynamics, a two-stage visual controller for solving the stabilization problem of a mobile robot is presented, applying the integration of adaptive control, sliding-mode control, and neural dynamics. In the first stage, an adaptive kinematic stabilization controller utilized to generate the command of velocity is developed based on Lyapunov theory. In the second stage, adopting the sliding-mode control approach, a dynamic controller with a variable speed function used to reduce the chattering is designed, which is utilized to generate the command of torque to make the actual velocity of the mobile robot asymptotically reach the desired velocity. Furthermore, to handle the speed and torque jump problems, the neural dynamics model is integrated into the above mentioned controllers. The stability of the proposed control system is analyzed by using Lyapunov theory. Finally, the simulation of the control law is implemented in perturbed case, and the results show that the control scheme can solve the stabilization problem effectively. The proposed control law can solve the speed and torque jump problems, overcome external disturbances, and provide a new solution for the vision-based stabilization of the mobile robot.展开更多
In a controlled indoor environment,line tracking has become the most practical and reliable navigation strategy for autonomous mobile robots.A line tracking robot is a self-mobile machine that can recognize and track ...In a controlled indoor environment,line tracking has become the most practical and reliable navigation strategy for autonomous mobile robots.A line tracking robot is a self-mobile machine that can recognize and track a painted line on thefloor.In general,the path is set and can be visible,such as a black line on a white surface with high contrasting colors.The robot’s path is marked by a distinct line or track,which the robot follows to move.Several scientific contributions from the disciplines of vision and control have been made to mobile robot vision-based navigation.Localization,automated map generation,autonomous navigation and path tracking is all becoming more frequent in vision applications.A visual navigation line tracking robot should detect the line with a camera using an image processing technique.The paper focuses on combining computer vision techniques with a proportional-integral-derivative(PID)control-ler for automatic steering and speed control.A prototype line tracking robot is used to evaluate the proposed control strategy.展开更多
Industrial robot system is a kind of dynamic system w ith strong nonlinear coupling and high position precision. A lot of control ways , such as nonlinear feedbackdecomposition motion and adaptive control and so o n, ...Industrial robot system is a kind of dynamic system w ith strong nonlinear coupling and high position precision. A lot of control ways , such as nonlinear feedbackdecomposition motion and adaptive control and so o n, have been used to control this kind of system, but there are some deficiencie s in those methods: some need accurate and some need complicated operation and e tc. In recent years, in need of controlling the industrial robots, aiming at com pletely tracking the ideal input for the controlled subject with repetitive character, a new research area, ILC (iterative learning control), has been devel oped in the control technology and theory. The iterative learning control method can make the controlled subject operate as desired in a definite time span, merely making use of the prior control experie nce of the system and searching for the desired control signal according to the practical and desired output signal. The process of searching is equal to that o f learning, during which we only need to measure the output signal to amend the control signal, not like the adaptive control strategy, which on line assesses t he complex parameters of the system. Besides, since the iterative learning contr ol relies little on the prior message of the subject, it has been well used in a lot of areas, especially the dynamic systems with strong non-linear coupling a nd high repetitive position precision and the control system with batch producti on. Since robot manipulator has the above-mentioned character, ILC can be very well used in robot manipulator. In the ILC, since the operation always begins with a certain initial state, init ial condition has been required in almost all convergence verification. Therefor e, in designing the controller, the initial state has to be restricted with some condition to guarantee the convergence of the algorithm. The settle of initial condition problem has long been pursued in the ILC. There are commonly two kinds of initial condition problems: one is zero initial error problem, another is non-zero initial error problem. In practice, the repe titive operation will invariably produce excursion of the iterative initial stat e from the desired initial state. As a result, the research on the second in itial problem has more practical meaning. In this paper, for the non-zero initial error problem, one novel robust ILC alg orithms, respectively combining PD type iterative learning control algorithm wit h the robust feedback control algorithm, has been presented. This novel robust ILC algorithm contain two parts: feedforward ILC algorithm and robust feedback algorithm, which can be used to restrain disturbance from param eter variation, mechanical nonlinearities and unmodeled dynamics and to achieve good performance as well. The feedforward ILC algorithm can be used to improve the tracking error and perf ormance of the system through iteratively learning from the previous operation, thus performing the tracking task very fast. The robust feedback algorithm could mainly be applied to make the real output of the system not deviate too much fr om the desired tracking trajectory, and guarantee the system’s robustness w hen there are exterior noises and variations of the system parameter. In this paper, in order to analyze the convergence of the algorithm, Lyapunov st ability theory has been used through properly selecting the Lyapunov function. T he result of the verification shows the feasibility of the novel robust iterativ e learning control in theory. Finally, aiming at the two-freedom rate robot, simulation has been made with th e MATLAB software. Furthermore, two groups of parameters are selected to validat e the robustness of the algorithm.展开更多
An adaptive learning tracking control scheme is developed for robotic manipulators by a synthesis of adaptive control and learning control approaches. The proposed controller possesses both adaptive and learning prope...An adaptive learning tracking control scheme is developed for robotic manipulators by a synthesis of adaptive control and learning control approaches. The proposed controller possesses both adaptive and learning properties and thereby is able to handle robotic systems with both time-varying periodic uncertainties and time invariant parameters. Theoretical proofs are established to show that proposed controllers ensure asymptotical tracking performance. The effectiveness of the proposed approaches is validated through extensive numerical simulation results.展开更多
A learning controller of nonhonolomic robot in real-time based on support vector machine(SVM)is presented.The controller includes two parts:one is kinematic controller based on nonlinear law,and the other is dynamic c...A learning controller of nonhonolomic robot in real-time based on support vector machine(SVM)is presented.The controller includes two parts:one is kinematic controller based on nonlinear law,and the other is dynamic controller based on SVM.The kinematic controller is aimed to provide desired velocity which can make the steering system stable.The dynamic controller is aimed to transform the desired velocity to control torque.The parameters of the dynamic system of the robot are estimated through SVM learning algorithm according to the training data of sliding windows in real time.The proposed controller can adapt to the changes in the robot model and uncertainties in the environment.Compared with artificial neural network(ANN)controller,SVM controller can converge to the reference trajectory more quickly and the tracking error is smaller.The simulation results verify the effectiveness of the method proposed.展开更多
In this study, “homeostasis”, the function by which living things keep their constancy, was emulated as a lighting control for a building space. The algorithm we developed mimics the mechanisms of the endocrine and ...In this study, “homeostasis”, the function by which living things keep their constancy, was emulated as a lighting control for a building space. The algorithm we developed mimics the mechanisms of the endocrine and immune systems. The endocrine system transmits information entirely, whereas the immune system transmits information with a concentration gradient. A lighting control system using the proposed algorithm was evaluated in a simulation and experiment using a sensor agent robot. In this algorithm, a robot recognizes a person’s behavior and uses it to decide his or her preference as to the illuminance. The results indicate that the algorithm can be used to realize a comfortable lighting control in several situations.展开更多
The task of an intelligent control system design applying soft and quantum computational intelligence technologies discussed.An example of a control object as a mobile robot with redundant robotic manipulator and ster...The task of an intelligent control system design applying soft and quantum computational intelligence technologies discussed.An example of a control object as a mobile robot with redundant robotic manipulator and stereovision introduced.Design of robust knowledge bases is performed using a developed computational intelligence-quantum/soft computing toolkit(QC/SCOptKBTM).The knowledge base self-organization process of fuzzy homogeneous regulators through the application of end-to-end IT of quantum computing described.The coordination control between the mobile robot and redundant manipulator with stereovision based on soft computing described.The general design methodology of a generalizing control unit based on the physical laws of quantum computing(quantum information-thermodynamic trade-off of control quality distribution and knowledge base self-organization goal)is considered.The modernization of the pattern recognition system based on stereo vision technology presented.The effectiveness of the proposed methodology is demonstrated in comparison with the structures of control systems based on soft computing for unforeseen control situations with sensor system.The main objective of this article is to demonstrate the advantages of the approach based on quantum/soft computing.展开更多
Iterative Learning Control (ILC) captures interests of many scholars because of its capability of high precision control implement without identifying plant mathematical models, and it is widely applied in control e...Iterative Learning Control (ILC) captures interests of many scholars because of its capability of high precision control implement without identifying plant mathematical models, and it is widely applied in control engineering. Presently, most ILC algorithms still follow the original ideas of ARIMOTO, in which the iterative-learning-rate is composed by the control error with its derivative and integral values. This kind of algorithms will result in inevitable problems such as huge computation, big storage capacity for algorithm data, and also weak robust. In order to resolve these problems, an improved iterative learning control algorithm with fixed step is proposed here which breaks the primary thought of ARIMOTO. In this algorithm, the control step is set only according to the value of the control error, which could enormously reduce the computation and storage size demanded, also improve the robust of the algorithm by not using the differential coefficient of the iterative learning error. In this paper, the convergence conditions of this proposed fixed step iterative learning algorithm is theoretically analyzed and testified. Then the algorithm is tested through simulation researches on a time-variant object with randomly set disturbance through calculation of step threshold value, algorithm robustness testing,and evaluation of the relation between convergence speed and step size. Finally the algorithm is validated on a valve-serving-cylinder system of a joint robot with time-variant parameters. Experiment results demonstrate the stability of the algorithm and also the relationship between step value and convergence rate. Both simulation and experiment testify the feasibility and validity of the new algorithm proposed here. And it is worth to noticing that this algorithm is simple but with strong robust after improvements, which provides new ideas to the research of iterative learning control algorithms.展开更多
This paper proposes an intelligent controller for motion control of robotic systems to obtain high precision tracking without the need for a real-time trial and error method.In addition, a new self-tuning algorithm ha...This paper proposes an intelligent controller for motion control of robotic systems to obtain high precision tracking without the need for a real-time trial and error method.In addition, a new self-tuning algorithm has been developed based on both the ant colony algorithm and a fuzzy system for real-time tuning of controller parameters. Simulations and experiments using a real robot have been addressed to demonstrate the success of the proposed controller and validate the theoretical analysis. Obtained results confirm that the proposed controller ensures robust performance in the presence of disturbances and parametric uncertainties without the need for adjustment of control law parameters by a trial and error method.展开更多
The complex working conditions and nonlinear characteristics of the motor drive control system of industrial robots make it difficult to detect faults.In this paper,a deep learning-based observer,which combines the co...The complex working conditions and nonlinear characteristics of the motor drive control system of industrial robots make it difficult to detect faults.In this paper,a deep learning-based observer,which combines the convolutional neural network(CNN)and the long short-term memory network(LSTM),is employed to approximate the nonlinear driving control system.CNN layers are introduced to extract dynamic features of the data,whereas LSTM layers perform time-sequential prediction of the target system.In terms of application,normal samples are fed into the observer to build an offline prediction model for the target system.The trained CNN-LSTM-based observer is then deployed along with the target system to estimate the system outputs.Online fault detection can be realized by analyzing the residuals.Finally,an application of the proposed fault detection method to a brushless DC motor drive system is given to verify the effectiveness of the proposed scheme.Simulation results indicate the impressive fault detection capability of the presented method for driving control systems of industrial robots.展开更多
A novel control system is developed to improve the capabilities of robet hand performing tasks in a variety of environments. A joint impedance control strategy has been successfully implemented in the low level contro...A novel control system is developed to improve the capabilities of robet hand performing tasks in a variety of environments. A joint impedance control strategy has been successfully implemented in the low level control of a highly integrated robot hand. At flint, a real time controller with DSP&FPGA-based multilevel control architecture is built. Then a current sensor of the single direct current (DC) link is used to measure and reconstruct the three phase currents, and a stable current signal is measured by optimizing sample instant. The experimental results of the joint impedance control show that the proposed method not only improves the effectiveness of contact environment performance, but also provides compliant interaction of robot hand with a person, which is very important for the development of friendly human robot of the next generation.展开更多
In order to improve the control performance of industrial robotic arms,an efficient fractional-order iterative sliding mode control method is proposed by combining fractional calculus theory with iterative learning co...In order to improve the control performance of industrial robotic arms,an efficient fractional-order iterative sliding mode control method is proposed by combining fractional calculus theory with iterative learning control and sliding mode control.In the design process of the controller,fractional approaching law and fractional sliding mode control theories are used to introduce fractional calculus into iterative sliding mode control,and Lyapunov theory is used to analyze the system stability.Then taking a two-joint robotic arm as an example,the proposed control strategy is verified by MATLAB simulation.The simulation experiments show that the fractional-order iterative sliding mode control strategy can effectively improve the tracking speed and tracking accuracy of the joint,reduce the tracking error,have strong robustness and effectively suppress the chattering phenomenon of sliding mode control.展开更多
In this paper, we present a vision guided robotic ball-beam balancing control system, consisting of a robot manipulator (actuator), a ball-beam system (plant) and a machine vision system (feedback). The machine vision...In this paper, we present a vision guided robotic ball-beam balancing control system, consisting of a robot manipulator (actuator), a ball-beam system (plant) and a machine vision system (feedback). The machine vision system feedbacks real-time beam angle and ball position data at a speed of 50 frames per second. Based on feedback data, the end-effector of a robot manipulator is driven to control the ball position by maneuvering of the inclination angle of the ball-beam system. The overall control system is implemented with two FPGA chips, one for machine vision processing, and one for robot joints servo PID controllers as well as ball position PD controller. Experiments are performed on a 5-axes robot manipulator to validate the proposed ball beam balancing control system.展开更多
基金This project was supported by the research foundation of China Education Ministry for the scholars from abroad (2002247).
文摘A learning-based control approach is presented for force servoing of a robot with vision in an unknown environment. Firstly, mapping relationships between image features of the servoing object and the joint angles of the robot are derived and learned by a neural network. Secondly, a learning controller based on the neural network is designed for the robot to trace the object. Thirdly, a discrete time impedance control law is obtained for the force servoing of the robot, the on-line learning algorithms for three neural networks are developed to adjust the impedance parameters of the robot in the unknown environment. Lastly, wiping experiments are carried out by using a 6 DOF industrial robot with a CCD camera and a force/torque sensor in its end effector, and the experimental results confirm the effecti veness of the approach.
文摘This paper develops a novel hierarchical control strategy for improving the trajectory tracking capability of aerial robots under parameter uncertainties.The hierarchical control strategy is composed of an adaptive sliding mode controller and a model-free iterative sliding mode controller(MFISMC).A position controller is designed based on adaptive sliding mode control(SMC)to safely drive the aerial robot and ensure fast state convergence under external disturbances.Additionally,the MFISMC acts as an attitude controller to estimate the unmodeled dynamics without detailed knowledge of aerial robots.Then,the adaption laws are derived with the Lyapunov theory to guarantee the asymptotic tracking of the system state.Finally,to demonstrate the performance and robustness of the proposed control strategy,numerical simulations are carried out,which are also compared with other conventional strategies,such as proportional-integralderivative(PID),backstepping(BS),and SMC.The simulation results indicate that the proposed hierarchical control strategy can fulfill zero steady-state error and achieve faster convergence compared with conventional strategies.
基金This work was supported by the National High Technology Research and Development Program of China under Grant 2002AA422160 by the National Key Fundamental Research and the Devel-opment Project of China (973) under Grant 2002CB312200.
文摘A real-time arc welding robot visual control system based on a local network with a multi-level hierarchy is developed in this paper. It consists of an intelligence and human-machine interface level, a motion planning level, a motion control level and a servo control level. The last three levels form a local real-time open robot controller, which realizes motion planning and motion control of a robot. A camera calibration method based on the relative movement of the end-effector connected to a robot is proposed and a method for tracking weld seam based on the structured light stereovision is provided. Combining the parameters of the cameras and laser plane, three groups of position values in Cartesian space are obtained for each feature point in a stripe projected on the weld seam. The accurate three-dimensional position of the edge points in the weld seam can be calculated from the obtained parameters with an information fusion algorithm. By calculating the weld seam parameter from position and image data, the movement parameters of the robot used for tracking can be determined. A swing welding experiment of type V groove weld is successfully conducted, the results of which show that the system has high resolution seam tracking in real-time, and works stably and efficiently.
基金supported by National Natural Science Foundation of China(61807016)Postgraduate Research and Practice Innovation Program of Jiangsu Province(KYCX18-1859)。
文摘In this paper, an open-loop PD-type iterative learning control(ILC) scheme is first proposed for two kinds of distributed parameter systems(DPSs) which are described by parabolic partial differential equations using non-collocated sensors and actuators. Then, a closed-loop PD-type ILC algorithm is extended to a class of distributed parameter systems with a non-collocated single sensor and m actuators when the initial states of the system exist some errors. Under some given assumptions, the convergence conditions of output errors for the systems can be obtained. Finally, one numerical example for a distributed parameter system with a single sensor and two actuators is presented to illustrate the effectiveness of the proposed ILC schemes.
基金Supported by the Scientific Research Foundation for the Returned 0verseas Chinese Scholars, State Education Ministry, and National Natural Science Foundation of China (60474005)
基金This work was partly supported by the National Science Foundation(1563921,1808752,1563454,1808898).
文摘We address a state-of-the-art reinforcement learning(RL)control approach to automatically configure robotic pros-thesis impedance parameters to enable end-to-end,continuous locomotion intended for transfemoral amputee subjects.Specifically,our actor-critic based RL provides tracking control of a robotic knee prosthesis to mimic the intact knee profile.This is a significant advance from our previous RL based automatic tuning of prosthesis control parameters which have centered on regulation control with a designer prescribed robotic knee profile as the target.In addition to presenting the tracking control algorithm based on direct heuristic dynamic programming(dHDP),we provide a control performance guarantee including the case of constrained inputs.We show that our proposed tracking control possesses several important properties,such as weight convergence of the learning networks,Bellman(sub)optimality of the cost-to-go value function and control input,and practical stability of the human-robot system.We further provide a systematic simulation of the proposed tracking control using a realistic human-robot system simulator,the OpenSim,to emulate how the dHDP enables level ground walking,walking on different terrains and at different paces.These results show that our proposed dHDP based tracking control is not only theoretically suitable,but also practically useful.
基金supported by National Key Basic Research and Development Program of China (973 Program,Grant No. 2009CB320602)National Natural Science Foundation of China (Grant Nos. 60834004,61025018)+2 种基金National Science and Technology Major Project of China(Grant No. 2011ZX02504-008)Fundamental Research Funds for the Central Universities of China (Grant No. ZZ1222)Key Laboratory of Advanced Engineering Surveying of NASMG of China (Grant No.TJES1106)
文摘Vision-based pose stabilization of nonholonomic mobile robots has received extensive attention. At present, most of the solutions of the problem do not take the robot dynamics into account in the controller design, so that these controllers are difficult to realize satisfactory control in practical application. Besides, many of the approaches suffer from the initial speed and torque jump which are not practical in the real world. Considering the kinematics and dynamics, a two-stage visual controller for solving the stabilization problem of a mobile robot is presented, applying the integration of adaptive control, sliding-mode control, and neural dynamics. In the first stage, an adaptive kinematic stabilization controller utilized to generate the command of velocity is developed based on Lyapunov theory. In the second stage, adopting the sliding-mode control approach, a dynamic controller with a variable speed function used to reduce the chattering is designed, which is utilized to generate the command of torque to make the actual velocity of the mobile robot asymptotically reach the desired velocity. Furthermore, to handle the speed and torque jump problems, the neural dynamics model is integrated into the above mentioned controllers. The stability of the proposed control system is analyzed by using Lyapunov theory. Finally, the simulation of the control law is implemented in perturbed case, and the results show that the control scheme can solve the stabilization problem effectively. The proposed control law can solve the speed and torque jump problems, overcome external disturbances, and provide a new solution for the vision-based stabilization of the mobile robot.
基金funding from the researchers supporting project number(RSP2022R474)King Saud University,Riyadh,Saudi Arabia.
文摘In a controlled indoor environment,line tracking has become the most practical and reliable navigation strategy for autonomous mobile robots.A line tracking robot is a self-mobile machine that can recognize and track a painted line on thefloor.In general,the path is set and can be visible,such as a black line on a white surface with high contrasting colors.The robot’s path is marked by a distinct line or track,which the robot follows to move.Several scientific contributions from the disciplines of vision and control have been made to mobile robot vision-based navigation.Localization,automated map generation,autonomous navigation and path tracking is all becoming more frequent in vision applications.A visual navigation line tracking robot should detect the line with a camera using an image processing technique.The paper focuses on combining computer vision techniques with a proportional-integral-derivative(PID)control-ler for automatic steering and speed control.A prototype line tracking robot is used to evaluate the proposed control strategy.
文摘Industrial robot system is a kind of dynamic system w ith strong nonlinear coupling and high position precision. A lot of control ways , such as nonlinear feedbackdecomposition motion and adaptive control and so o n, have been used to control this kind of system, but there are some deficiencie s in those methods: some need accurate and some need complicated operation and e tc. In recent years, in need of controlling the industrial robots, aiming at com pletely tracking the ideal input for the controlled subject with repetitive character, a new research area, ILC (iterative learning control), has been devel oped in the control technology and theory. The iterative learning control method can make the controlled subject operate as desired in a definite time span, merely making use of the prior control experie nce of the system and searching for the desired control signal according to the practical and desired output signal. The process of searching is equal to that o f learning, during which we only need to measure the output signal to amend the control signal, not like the adaptive control strategy, which on line assesses t he complex parameters of the system. Besides, since the iterative learning contr ol relies little on the prior message of the subject, it has been well used in a lot of areas, especially the dynamic systems with strong non-linear coupling a nd high repetitive position precision and the control system with batch producti on. Since robot manipulator has the above-mentioned character, ILC can be very well used in robot manipulator. In the ILC, since the operation always begins with a certain initial state, init ial condition has been required in almost all convergence verification. Therefor e, in designing the controller, the initial state has to be restricted with some condition to guarantee the convergence of the algorithm. The settle of initial condition problem has long been pursued in the ILC. There are commonly two kinds of initial condition problems: one is zero initial error problem, another is non-zero initial error problem. In practice, the repe titive operation will invariably produce excursion of the iterative initial stat e from the desired initial state. As a result, the research on the second in itial problem has more practical meaning. In this paper, for the non-zero initial error problem, one novel robust ILC alg orithms, respectively combining PD type iterative learning control algorithm wit h the robust feedback control algorithm, has been presented. This novel robust ILC algorithm contain two parts: feedforward ILC algorithm and robust feedback algorithm, which can be used to restrain disturbance from param eter variation, mechanical nonlinearities and unmodeled dynamics and to achieve good performance as well. The feedforward ILC algorithm can be used to improve the tracking error and perf ormance of the system through iteratively learning from the previous operation, thus performing the tracking task very fast. The robust feedback algorithm could mainly be applied to make the real output of the system not deviate too much fr om the desired tracking trajectory, and guarantee the system’s robustness w hen there are exterior noises and variations of the system parameter. In this paper, in order to analyze the convergence of the algorithm, Lyapunov st ability theory has been used through properly selecting the Lyapunov function. T he result of the verification shows the feasibility of the novel robust iterativ e learning control in theory. Finally, aiming at the two-freedom rate robot, simulation has been made with th e MATLAB software. Furthermore, two groups of parameters are selected to validat e the robustness of the algorithm.
文摘An adaptive learning tracking control scheme is developed for robotic manipulators by a synthesis of adaptive control and learning control approaches. The proposed controller possesses both adaptive and learning properties and thereby is able to handle robotic systems with both time-varying periodic uncertainties and time invariant parameters. Theoretical proofs are established to show that proposed controllers ensure asymptotical tracking performance. The effectiveness of the proposed approaches is validated through extensive numerical simulation results.
基金Project(60910005)supported by the National Natural Science Foundation of China
文摘A learning controller of nonhonolomic robot in real-time based on support vector machine(SVM)is presented.The controller includes two parts:one is kinematic controller based on nonlinear law,and the other is dynamic controller based on SVM.The kinematic controller is aimed to provide desired velocity which can make the steering system stable.The dynamic controller is aimed to transform the desired velocity to control torque.The parameters of the dynamic system of the robot are estimated through SVM learning algorithm according to the training data of sliding windows in real time.The proposed controller can adapt to the changes in the robot model and uncertainties in the environment.Compared with artificial neural network(ANN)controller,SVM controller can converge to the reference trajectory more quickly and the tracking error is smaller.The simulation results verify the effectiveness of the method proposed.
文摘In this study, “homeostasis”, the function by which living things keep their constancy, was emulated as a lighting control for a building space. The algorithm we developed mimics the mechanisms of the endocrine and immune systems. The endocrine system transmits information entirely, whereas the immune system transmits information with a concentration gradient. A lighting control system using the proposed algorithm was evaluated in a simulation and experiment using a sensor agent robot. In this algorithm, a robot recognizes a person’s behavior and uses it to decide his or her preference as to the illuminance. The results indicate that the algorithm can be used to realize a comfortable lighting control in several situations.
文摘The task of an intelligent control system design applying soft and quantum computational intelligence technologies discussed.An example of a control object as a mobile robot with redundant robotic manipulator and stereovision introduced.Design of robust knowledge bases is performed using a developed computational intelligence-quantum/soft computing toolkit(QC/SCOptKBTM).The knowledge base self-organization process of fuzzy homogeneous regulators through the application of end-to-end IT of quantum computing described.The coordination control between the mobile robot and redundant manipulator with stereovision based on soft computing described.The general design methodology of a generalizing control unit based on the physical laws of quantum computing(quantum information-thermodynamic trade-off of control quality distribution and knowledge base self-organization goal)is considered.The modernization of the pattern recognition system based on stereo vision technology presented.The effectiveness of the proposed methodology is demonstrated in comparison with the structures of control systems based on soft computing for unforeseen control situations with sensor system.The main objective of this article is to demonstrate the advantages of the approach based on quantum/soft computing.
基金supported by Specialized Research Fund for Doctoral Program of Higher Education of China (Grant No. 20091102120038)
文摘Iterative Learning Control (ILC) captures interests of many scholars because of its capability of high precision control implement without identifying plant mathematical models, and it is widely applied in control engineering. Presently, most ILC algorithms still follow the original ideas of ARIMOTO, in which the iterative-learning-rate is composed by the control error with its derivative and integral values. This kind of algorithms will result in inevitable problems such as huge computation, big storage capacity for algorithm data, and also weak robust. In order to resolve these problems, an improved iterative learning control algorithm with fixed step is proposed here which breaks the primary thought of ARIMOTO. In this algorithm, the control step is set only according to the value of the control error, which could enormously reduce the computation and storage size demanded, also improve the robust of the algorithm by not using the differential coefficient of the iterative learning error. In this paper, the convergence conditions of this proposed fixed step iterative learning algorithm is theoretically analyzed and testified. Then the algorithm is tested through simulation researches on a time-variant object with randomly set disturbance through calculation of step threshold value, algorithm robustness testing,and evaluation of the relation between convergence speed and step size. Finally the algorithm is validated on a valve-serving-cylinder system of a joint robot with time-variant parameters. Experiment results demonstrate the stability of the algorithm and also the relationship between step value and convergence rate. Both simulation and experiment testify the feasibility and validity of the new algorithm proposed here. And it is worth to noticing that this algorithm is simple but with strong robust after improvements, which provides new ideas to the research of iterative learning control algorithms.
文摘This paper proposes an intelligent controller for motion control of robotic systems to obtain high precision tracking without the need for a real-time trial and error method.In addition, a new self-tuning algorithm has been developed based on both the ant colony algorithm and a fuzzy system for real-time tuning of controller parameters. Simulations and experiments using a real robot have been addressed to demonstrate the success of the proposed controller and validate the theoretical analysis. Obtained results confirm that the proposed controller ensures robust performance in the presence of disturbances and parametric uncertainties without the need for adjustment of control law parameters by a trial and error method.
基金supported in part by the Natural Science Foundation of the Jiangsu Higher Education Institutions of China under Grant 21KJA470007。
文摘The complex working conditions and nonlinear characteristics of the motor drive control system of industrial robots make it difficult to detect faults.In this paper,a deep learning-based observer,which combines the convolutional neural network(CNN)and the long short-term memory network(LSTM),is employed to approximate the nonlinear driving control system.CNN layers are introduced to extract dynamic features of the data,whereas LSTM layers perform time-sequential prediction of the target system.In terms of application,normal samples are fed into the observer to build an offline prediction model for the target system.The trained CNN-LSTM-based observer is then deployed along with the target system to estimate the system outputs.Online fault detection can be realized by analyzing the residuals.Finally,an application of the proposed fault detection method to a brushless DC motor drive system is given to verify the effectiveness of the proposed scheme.Simulation results indicate the impressive fault detection capability of the presented method for driving control systems of industrial robots.
文摘A novel control system is developed to improve the capabilities of robet hand performing tasks in a variety of environments. A joint impedance control strategy has been successfully implemented in the low level control of a highly integrated robot hand. At flint, a real time controller with DSP&FPGA-based multilevel control architecture is built. Then a current sensor of the single direct current (DC) link is used to measure and reconstruct the three phase currents, and a stable current signal is measured by optimizing sample instant. The experimental results of the joint impedance control show that the proposed method not only improves the effectiveness of contact environment performance, but also provides compliant interaction of robot hand with a person, which is very important for the development of friendly human robot of the next generation.
基金National Natural Science Foundation of China(No.61663022)Department of Education Project of Gansu Province(No.18JR3RA105)。
文摘In order to improve the control performance of industrial robotic arms,an efficient fractional-order iterative sliding mode control method is proposed by combining fractional calculus theory with iterative learning control and sliding mode control.In the design process of the controller,fractional approaching law and fractional sliding mode control theories are used to introduce fractional calculus into iterative sliding mode control,and Lyapunov theory is used to analyze the system stability.Then taking a two-joint robotic arm as an example,the proposed control strategy is verified by MATLAB simulation.The simulation experiments show that the fractional-order iterative sliding mode control strategy can effectively improve the tracking speed and tracking accuracy of the joint,reduce the tracking error,have strong robustness and effectively suppress the chattering phenomenon of sliding mode control.
文摘In this paper, we present a vision guided robotic ball-beam balancing control system, consisting of a robot manipulator (actuator), a ball-beam system (plant) and a machine vision system (feedback). The machine vision system feedbacks real-time beam angle and ball position data at a speed of 50 frames per second. Based on feedback data, the end-effector of a robot manipulator is driven to control the ball position by maneuvering of the inclination angle of the ball-beam system. The overall control system is implemented with two FPGA chips, one for machine vision processing, and one for robot joints servo PID controllers as well as ball position PD controller. Experiments are performed on a 5-axes robot manipulator to validate the proposed ball beam balancing control system.