The rheological properties including the complex modulus G* and the phase angle δof matrix and warm mix asphalt (WMA)binders were measured by using the dynamic shear rheometer (DSR ) test at the medium temperatu...The rheological properties including the complex modulus G* and the phase angle δof matrix and warm mix asphalt (WMA)binders were measured by using the dynamic shear rheometer (DSR ) test at the medium temperature ranging from 16 to 40 ℃,and the relationships between the fatigue factor G* sinδand the matrix binder property,WMA additive and test temperature were established.It is found that G* decreases with the increasing temperature while δincreases inversely,and G* of the asphalt binder with high WMA additive dosage is large,and δis small.G*sinδexponentially decreases with the increasing temperature and linearly increases with the increase in additive dosage,and the amplitudes of variation are large at low temperatures and high additive dosages.The effect of WMA additive on the rheological property is more remarkable for the matrix asphalt binder with low G*.Besides,aging has a great effect on the property of matrix asphalt binder,and a slight effect on the interaction between asphalt and additive.The high additive dosage can increase the fatigue cracking potential of the asphalt binder.展开更多
Estimation of strain-dependent dynamic soil properties, e.g. the shear modulus and damping ratio, along with the liquefaction potential parameters, is extremely important for the assessment and analysis of almost all ...Estimation of strain-dependent dynamic soil properties, e.g. the shear modulus and damping ratio, along with the liquefaction potential parameters, is extremely important for the assessment and analysis of almost all geotechnical problems involving dynamic loading. This paper presents the dynamic properties and liquefaction behaviour of cohesive soil subjected to staged cyclic loading, which may be caused by main shocks of earthquakes preceded or followed by minor foreshocks or aftershocks, respectively. Cyclic triaxial tests were conducted on the specimens prepared at different dry densities (1.5 g/cm3 and 1.75 g/cm3) and different water contents ranging from 8% to 25%. The results indicated that the shear modulus reduction (G/Gmax) and damping ratio of the specimen remain unaffected due to the changes in the initial dry density and water content. Damping ratio is significantly affected by confining pressure, whereas G/Gmax is affected marginally. It was seen that the liquefaction criterion of cohesive soils based on single-amplitude shear strain (3.75% or the strain at which excess pore water pressure ratio becomes equal to 1, whichever is lower) depends on the initial state of soils and applied stresses. The dynamic model of the regional soil, obtained as an outcome of the cyclic triaxial tests, can be successfully used for ground response analysis of the region.展开更多
The field test of a typical Tibetan ancient structure instrumented with displacement and acceleration transducers was conducted to measure time histories due to crowd walking and running. The test case is introduced f...The field test of a typical Tibetan ancient structure instrumented with displacement and acceleration transducers was conducted to measure time histories due to crowd walking and running. The test case is introduced firstly. The displacement time histories are then used to analyze the dynamic property such as fundamental frequency of vertical vibration and damping ratio of the test structure, and the acceleration time histories are applied to evaluate the floor vibration serviceability. The floor interaction and comparison of human walking and running are also discussed. Some valuable conclusions are given.展开更多
Experimental data taken from free-field soil in 1-g shaking table tests are valuable for seismic studies on soil-structure interaction.But the available data from medium-to large-scale shaking table tests were not abu...Experimental data taken from free-field soil in 1-g shaking table tests are valuable for seismic studies on soil-structure interaction.But the available data from medium-to large-scale shaking table tests were not abundant enough to cover a large variety of types and conditions of the soil.In the study,1-g shaking table tests of a 3-m-height sand column were conducted to provide seismic experimental data about sand.The sand was directly collected in-situ,with the largest grain diameter being 2 cm and containing a water content of 6.3%.Properties of the sand were estimated under the influence of white noise plus pulse and earthquake motions,including the settlement,the dynamic properties of the sand column,and the three soil layers′shear modulus degradation relationships.The estimated properties were then indirectly verified by means of finite element analysis.Results show that the estimated parameters were effective and could be used in numerical modeling to reproduce approximate seismic responses of the sand column.展开更多
A new double-arch structure for the gate used as tidal barrage and sluice was adopted in Caoe River Dam in China. It was a spatial structure made up of the right arch, the invert arch, the chord, etc., and was designe...A new double-arch structure for the gate used as tidal barrage and sluice was adopted in Caoe River Dam in China. It was a spatial structure made up of the right arch, the invert arch, the chord, etc., and was designed to bear bilateral loads. To research the cyclic behavior of the new double-arch structure, a scale-model cyclic test was conducted. First, the test setup and test method were presented in detail, and according to the test results, the cyclic behavior and failure characteristics of this structure were discussed. Then by analyzing the test cyclic envelope curve, it was found the curve was divided into three stages: the elastic stage, the local plastic stage and the failure stage at the local yield point and structural yield point. The gate model has local yield strength and structural yield strength, with both their values being bigger than that of the designing load. Therefore, the gate is safe enough for the projects. At last, dynamic property of the gate was analyzed considering additional mass of the water. It was found that the tidal bore shock would not cause resonance vibration of the gate.展开更多
Dynamic properties of rocks are important in a variety of rock mechanics and rock engineering problems.Due to the transient nature of the loading, dynamic tests of rock materials are very different from and much more ...Dynamic properties of rocks are important in a variety of rock mechanics and rock engineering problems.Due to the transient nature of the loading, dynamic tests of rock materials are very different from and much more challenging than their static counterparts. Dynamic tests are usually conducted using the split Hopkinson bar or Kolsky bar systems, which include both split Hopkinson pressure bar(SHPB) and split Hopkinson tension bar(SHTB) systems. Signi fi cant progress has been made on the quanti fi cation of various rock dynamic properties, owing to the advances in the experimental techniques of SHPB system.This review aims to fully describe and critically assess the detailed procedures and principles of techniques for dynamic rock tests using split Hopkinson bars. The history and principles of SHPB are outlined,followed by the key loading techniques that are useful for dynamic rock tests with SHPB(i.e. pulse shaping, momentum-trap and multi-axial loading techniques). Various measurement techniques for rock tests in SHPB(i.e. X-ray micro computed tomography(CT), laser gap gauge(LGG), digital image correlation(DIC), Moiré method, caustics method, photoelastic coating method, dynamic infrared thermography) are then discussed. As the main objective of the review, various dynamic measurement techniques for rocks using SHPB are described, including dynamic rock strength measurements(i.e.dynamic compression, tension, bending and shear tests), dynamic fracture measurements(i.e. dynamic imitation and propagation fracture toughness, dynamic fracture energy and fracture velocity), and dynamic techniques for studying the in fl uences of temperature and pore water.展开更多
Cemented tailings backfill(CTB) have increasingly been used in recent years to improve the stability of mining stopes in deep underground mines. Deep mining processes are often associated with rock bursting and high-s...Cemented tailings backfill(CTB) have increasingly been used in recent years to improve the stability of mining stopes in deep underground mines. Deep mining processes are often associated with rock bursting and high-speed dynamic loading conditions. Therefore, it is important to investigate the characteristics and dynamic mechanical behavior of CTB. This paper presents the results of dynamic tests on CTB specimens with different cement and solid contents using a split Hopkinson pressure bar(SHPB). The results showed that some CTB specimens exhibited one to two lower stress peaks after reaching dynamic peak stress before they completely failed. The greater the cement-to-tailings ratio is, the more obvious the strain reaction. This property mainly manifested as follows. First,the dynamic peak stress increased with the increase of the cement-to-tailings ratio when the impact velocity was fixed. Second, the dynamic peak stress had a quadratic relationship with the average stress rate. Third, the cement-to-tailings ratio could enhance the increase rate of dynamic peak stress with strain rate. In addition, the dynamic strength enhancement factor K increased with the increase of strain rate, and its value was larger than that of the rock samples. The failure modes of CTB specimens under low-speed impact were tensile failure and X conjugate shear failure, where were nearly the same as those under static uniaxial and triaxial compression. The CTB specimens were crushed and broken under critical strain, a failure mode similar to that of low-strength concrete. The results of the experimental research can improve the understanding of the dynamic mechanical properties of CTB and guide the strength design of deep mining backfills.展开更多
Investigations on the dynamic mechanical properties and failure mechanisms of coal under in-situ stress is essential for the prevention of dynamic disasters in deep coal mines.Thus,a modified true triaxial Hopkinson b...Investigations on the dynamic mechanical properties and failure mechanisms of coal under in-situ stress is essential for the prevention of dynamic disasters in deep coal mines.Thus,a modified true triaxial Hopkinson bar was employed to explore the dynamic mechanical behaviors of coal at different confining pressures(0–20 MPa)and strain rates(40–220 s^(-1)).The results show that the dynamic peak stress is positively correlated with lateral static pre-stressσy andσz,but negatively correlated with axial static prestressσx.At approximate strain rates,increasing the lateral static pre-stress facilitates increasing the dynamic peak stress,but the minimum lateral static pre-stress is the primary factor limiting a significant increase in dynamic peak stress of coal.Furthermore,the dynamic differential stress is linearly related to the logarithm of strain rate,and the peak strain varies linearly with strain rate.However,there is no significant correlation between confining pressure and peak strain.Moreover,X-ray CT images and photographic fracture observations of coal samples show the failure patterns under uniaxial and triaxial conditions are splitting failure and shear failure,respectively.The device provides a viable approach for fully comprehending the dynamic mechanical behaviors of rock-like material in complex stress conditions.展开更多
As a widely-applied engineering material in cold regions, the frozen subgrade soils are usually subjected to seismic loading, which are also dramatically influenced by the freeze-thaw(F-T)cycles due to the varying tem...As a widely-applied engineering material in cold regions, the frozen subgrade soils are usually subjected to seismic loading, which are also dramatically influenced by the freeze-thaw(F-T)cycles due to the varying temperature. A series of dynamic cyclic triaxial experiments were conducted through a cryogenic triaxial apparatus for exploring the influences of F-T cycles on the dynamic mechanical properties of frozen subgrade clay.According to the experimental results of frozen clay at the temperature of-10℃, the dynamic responses and microstructure variation at different times of F-T cycles(0, 1, 5, and 20 cycles) were explored in detail.It is experimentally demonstrated that the dynamic stress-strain curves and dynamic volumetric strain curves of frozen clay are significantly sparse after 20F-T cycles. Meanwhile, the cyclic number at failure(Nf) of the frozen specimen reduces by 89% after 20freeze-thaw cycles at a low ratio of the dynamic stress amplitude. In addition, with the increasing F-T cycles,the axial accumulative strain, residual deformation,and the value of damage variable of frozen clay increase, while the dynamic resilient modulus and dynamic strength decrease. Finally, the influence of the F-T cycles on the failure mechanisms of frozen clay was discussed in terms of the microstructure variation. These studies contribute to a better understanding of the fundamental changes in the dynamic mechanical of frozen soils exposed to F-T cycles in cold and seismic regions.展开更多
In order to study the chemical modification mechanism and rheological properties of polyphosphoric acid (PPA)-modified asphalt,asphalt modified with different PPA contents were characterized by four-component test,ato...In order to study the chemical modification mechanism and rheological properties of polyphosphoric acid (PPA)-modified asphalt,asphalt modified with different PPA contents were characterized by four-component test,atomic force microscopy (AFM) and Fourier transform infrared spectroscopy (FTIR).In the test,changes in asphalt chemical composition and colloidal structure were analyzed for different PPA contents,and infrared spectra were fitted with a Gaussian function.The reaction mechanism of PPA and matrix asphalt was also discussed.Based on dynamic shear rheometer (DSR) test and bending beam rheometer (BBR) test,rheological index G~*/sinδ and S/m were used to evaluate the modification effect of PPA on asphalt.The results show that,with an increase in PPA content,both large and small honeycomb structures increased in the three-dimensional topography seen in the atomic force microscope (AFM).In a certain space range,some of the micelles in the asphalt are connected each other to form interlocking skeleton structures,and locally form dense spatial network structures.The added PPA does not chemically react with the functional groups in the functional-group area of the infrared spectra (3 100-2 750 cm^(-1),1 800-1 330 cm^(-1)),and the structure is very stable.However,there is an obvious new absorption peak below 1 330 cm^(-1) in the fingerprint area,that is,the chemical reaction between PPA and the matrix asphalt generates a new compound,inorganic phosphate.Infrared spectra of PPA-modified asphalt with different contents were fitted by a Gaussian function,which makes up for the limitation that the absorption intensity information of each superimposed functional group cannot be obtained directly from the original infrared spectra.Results of this qualitative analysis were further verified by quantitative analysis.The addition of PPA can effectively improve the high and low-temperature performance of asphalt,and the lower the temperature is in the negative temperature zone,the more obvious the improvement is.When PPA content is more than 1%,the improvement of asphalt low-temperature performance is not obvious.展开更多
基金The National Natural Science Foundation of China(No.51408043)the Natural Science Foundation of Shaanxi Province(No.2014JQ7278)
文摘The rheological properties including the complex modulus G* and the phase angle δof matrix and warm mix asphalt (WMA)binders were measured by using the dynamic shear rheometer (DSR ) test at the medium temperature ranging from 16 to 40 ℃,and the relationships between the fatigue factor G* sinδand the matrix binder property,WMA additive and test temperature were established.It is found that G* decreases with the increasing temperature while δincreases inversely,and G* of the asphalt binder with high WMA additive dosage is large,and δis small.G*sinδexponentially decreases with the increasing temperature and linearly increases with the increase in additive dosage,and the amplitudes of variation are large at low temperatures and high additive dosages.The effect of WMA additive on the rheological property is more remarkable for the matrix asphalt binder with low G*.Besides,aging has a great effect on the property of matrix asphalt binder,and a slight effect on the interaction between asphalt and additive.The high additive dosage can increase the fatigue cracking potential of the asphalt binder.
文摘Estimation of strain-dependent dynamic soil properties, e.g. the shear modulus and damping ratio, along with the liquefaction potential parameters, is extremely important for the assessment and analysis of almost all geotechnical problems involving dynamic loading. This paper presents the dynamic properties and liquefaction behaviour of cohesive soil subjected to staged cyclic loading, which may be caused by main shocks of earthquakes preceded or followed by minor foreshocks or aftershocks, respectively. Cyclic triaxial tests were conducted on the specimens prepared at different dry densities (1.5 g/cm3 and 1.75 g/cm3) and different water contents ranging from 8% to 25%. The results indicated that the shear modulus reduction (G/Gmax) and damping ratio of the specimen remain unaffected due to the changes in the initial dry density and water content. Damping ratio is significantly affected by confining pressure, whereas G/Gmax is affected marginally. It was seen that the liquefaction criterion of cohesive soils based on single-amplitude shear strain (3.75% or the strain at which excess pore water pressure ratio becomes equal to 1, whichever is lower) depends on the initial state of soils and applied stresses. The dynamic model of the regional soil, obtained as an outcome of the cyclic triaxial tests, can be successfully used for ground response analysis of the region.
基金Acknowledgements The supports provided for the paper by the National Natural Science Foundation of China (Grant No. 50778019) and the Natural Science Foundation of Beijing (Grant No. 8092024) are gratefully appreciated.
文摘The field test of a typical Tibetan ancient structure instrumented with displacement and acceleration transducers was conducted to measure time histories due to crowd walking and running. The test case is introduced firstly. The displacement time histories are then used to analyze the dynamic property such as fundamental frequency of vertical vibration and damping ratio of the test structure, and the acceleration time histories are applied to evaluate the floor vibration serviceability. The floor interaction and comparison of human walking and running are also discussed. Some valuable conclusions are given.
基金Supported by:National Natural Science Foundation of China under Grant Nos.52008233 and U1839201the National Key Research and Development Program of China under Grant No.2018YFC1504305the Innovative Research Groups of the National Natural Science Foundation of China under Grant No.51421005。
文摘Experimental data taken from free-field soil in 1-g shaking table tests are valuable for seismic studies on soil-structure interaction.But the available data from medium-to large-scale shaking table tests were not abundant enough to cover a large variety of types and conditions of the soil.In the study,1-g shaking table tests of a 3-m-height sand column were conducted to provide seismic experimental data about sand.The sand was directly collected in-situ,with the largest grain diameter being 2 cm and containing a water content of 6.3%.Properties of the sand were estimated under the influence of white noise plus pulse and earthquake motions,including the settlement,the dynamic properties of the sand column,and the three soil layers′shear modulus degradation relationships.The estimated properties were then indirectly verified by means of finite element analysis.Results show that the estimated parameters were effective and could be used in numerical modeling to reproduce approximate seismic responses of the sand column.
基金Project supported by the Research Foundation for the DoctoralProgram of Higher Education of China (No. 20050335097)Caoe River Dam Investment Ltd., China
文摘A new double-arch structure for the gate used as tidal barrage and sluice was adopted in Caoe River Dam in China. It was a spatial structure made up of the right arch, the invert arch, the chord, etc., and was designed to bear bilateral loads. To research the cyclic behavior of the new double-arch structure, a scale-model cyclic test was conducted. First, the test setup and test method were presented in detail, and according to the test results, the cyclic behavior and failure characteristics of this structure were discussed. Then by analyzing the test cyclic envelope curve, it was found the curve was divided into three stages: the elastic stage, the local plastic stage and the failure stage at the local yield point and structural yield point. The gate model has local yield strength and structural yield strength, with both their values being bigger than that of the designing load. Therefore, the gate is safe enough for the projects. At last, dynamic property of the gate was analyzed considering additional mass of the water. It was found that the tidal bore shock would not cause resonance vibration of the gate.
基金support by the Natural Sciences and Engineering Research Council of Canada (NSERC) through the Discovery Grant No. 72031326
文摘Dynamic properties of rocks are important in a variety of rock mechanics and rock engineering problems.Due to the transient nature of the loading, dynamic tests of rock materials are very different from and much more challenging than their static counterparts. Dynamic tests are usually conducted using the split Hopkinson bar or Kolsky bar systems, which include both split Hopkinson pressure bar(SHPB) and split Hopkinson tension bar(SHTB) systems. Signi fi cant progress has been made on the quanti fi cation of various rock dynamic properties, owing to the advances in the experimental techniques of SHPB system.This review aims to fully describe and critically assess the detailed procedures and principles of techniques for dynamic rock tests using split Hopkinson bars. The history and principles of SHPB are outlined,followed by the key loading techniques that are useful for dynamic rock tests with SHPB(i.e. pulse shaping, momentum-trap and multi-axial loading techniques). Various measurement techniques for rock tests in SHPB(i.e. X-ray micro computed tomography(CT), laser gap gauge(LGG), digital image correlation(DIC), Moiré method, caustics method, photoelastic coating method, dynamic infrared thermography) are then discussed. As the main objective of the review, various dynamic measurement techniques for rocks using SHPB are described, including dynamic rock strength measurements(i.e.dynamic compression, tension, bending and shear tests), dynamic fracture measurements(i.e. dynamic imitation and propagation fracture toughness, dynamic fracture energy and fracture velocity), and dynamic techniques for studying the in fl uences of temperature and pore water.
基金financially supported by the National Key R&D Program of China (No. 2018YFC0604602)the Fundamental Research Funds for the Central Universities of China (No. FRF-TP-17-029A2)the Open fund of Key Laboratory of High-Efficient Mining and Safety of Metal Mines, Ministry of Education of China (No. ustbmslab201803)
文摘Cemented tailings backfill(CTB) have increasingly been used in recent years to improve the stability of mining stopes in deep underground mines. Deep mining processes are often associated with rock bursting and high-speed dynamic loading conditions. Therefore, it is important to investigate the characteristics and dynamic mechanical behavior of CTB. This paper presents the results of dynamic tests on CTB specimens with different cement and solid contents using a split Hopkinson pressure bar(SHPB). The results showed that some CTB specimens exhibited one to two lower stress peaks after reaching dynamic peak stress before they completely failed. The greater the cement-to-tailings ratio is, the more obvious the strain reaction. This property mainly manifested as follows. First,the dynamic peak stress increased with the increase of the cement-to-tailings ratio when the impact velocity was fixed. Second, the dynamic peak stress had a quadratic relationship with the average stress rate. Third, the cement-to-tailings ratio could enhance the increase rate of dynamic peak stress with strain rate. In addition, the dynamic strength enhancement factor K increased with the increase of strain rate, and its value was larger than that of the rock samples. The failure modes of CTB specimens under low-speed impact were tensile failure and X conjugate shear failure, where were nearly the same as those under static uniaxial and triaxial compression. The CTB specimens were crushed and broken under critical strain, a failure mode similar to that of low-strength concrete. The results of the experimental research can improve the understanding of the dynamic mechanical properties of CTB and guide the strength design of deep mining backfills.
基金the National Key Research and Development Program of China(Nos.2019YFE0118500 and 2019YFC1904304)National Natural Science Foundation of China(Nos.52104107 and U22A20598)Natural Science Foundation of Jiangsu Province(No.BK20200634).
文摘Investigations on the dynamic mechanical properties and failure mechanisms of coal under in-situ stress is essential for the prevention of dynamic disasters in deep coal mines.Thus,a modified true triaxial Hopkinson bar was employed to explore the dynamic mechanical behaviors of coal at different confining pressures(0–20 MPa)and strain rates(40–220 s^(-1)).The results show that the dynamic peak stress is positively correlated with lateral static pre-stressσy andσz,but negatively correlated with axial static prestressσx.At approximate strain rates,increasing the lateral static pre-stress facilitates increasing the dynamic peak stress,but the minimum lateral static pre-stress is the primary factor limiting a significant increase in dynamic peak stress of coal.Furthermore,the dynamic differential stress is linearly related to the logarithm of strain rate,and the peak strain varies linearly with strain rate.However,there is no significant correlation between confining pressure and peak strain.Moreover,X-ray CT images and photographic fracture observations of coal samples show the failure patterns under uniaxial and triaxial conditions are splitting failure and shear failure,respectively.The device provides a viable approach for fully comprehending the dynamic mechanical behaviors of rock-like material in complex stress conditions.
基金the National Natural Science Foundation of China (NSFC)(Grant Nos.U22A20596 and 41771066)the Science and Technology Project of Qinghai-Tibet Railway Company (QZ2021-G03)。
文摘As a widely-applied engineering material in cold regions, the frozen subgrade soils are usually subjected to seismic loading, which are also dramatically influenced by the freeze-thaw(F-T)cycles due to the varying temperature. A series of dynamic cyclic triaxial experiments were conducted through a cryogenic triaxial apparatus for exploring the influences of F-T cycles on the dynamic mechanical properties of frozen subgrade clay.According to the experimental results of frozen clay at the temperature of-10℃, the dynamic responses and microstructure variation at different times of F-T cycles(0, 1, 5, and 20 cycles) were explored in detail.It is experimentally demonstrated that the dynamic stress-strain curves and dynamic volumetric strain curves of frozen clay are significantly sparse after 20F-T cycles. Meanwhile, the cyclic number at failure(Nf) of the frozen specimen reduces by 89% after 20freeze-thaw cycles at a low ratio of the dynamic stress amplitude. In addition, with the increasing F-T cycles,the axial accumulative strain, residual deformation,and the value of damage variable of frozen clay increase, while the dynamic resilient modulus and dynamic strength decrease. Finally, the influence of the F-T cycles on the failure mechanisms of frozen clay was discussed in terms of the microstructure variation. These studies contribute to a better understanding of the fundamental changes in the dynamic mechanical of frozen soils exposed to F-T cycles in cold and seismic regions.
基金Funded by National Natural Science Foundation of China (No. 11962024)Inner Mongolia Transportation Technology Project (No. NJ-2014-9)Research Fund for the Doctoral Program of Higher Education of China (RFDP)(No. BS2020042)。
文摘In order to study the chemical modification mechanism and rheological properties of polyphosphoric acid (PPA)-modified asphalt,asphalt modified with different PPA contents were characterized by four-component test,atomic force microscopy (AFM) and Fourier transform infrared spectroscopy (FTIR).In the test,changes in asphalt chemical composition and colloidal structure were analyzed for different PPA contents,and infrared spectra were fitted with a Gaussian function.The reaction mechanism of PPA and matrix asphalt was also discussed.Based on dynamic shear rheometer (DSR) test and bending beam rheometer (BBR) test,rheological index G~*/sinδ and S/m were used to evaluate the modification effect of PPA on asphalt.The results show that,with an increase in PPA content,both large and small honeycomb structures increased in the three-dimensional topography seen in the atomic force microscope (AFM).In a certain space range,some of the micelles in the asphalt are connected each other to form interlocking skeleton structures,and locally form dense spatial network structures.The added PPA does not chemically react with the functional groups in the functional-group area of the infrared spectra (3 100-2 750 cm^(-1),1 800-1 330 cm^(-1)),and the structure is very stable.However,there is an obvious new absorption peak below 1 330 cm^(-1) in the fingerprint area,that is,the chemical reaction between PPA and the matrix asphalt generates a new compound,inorganic phosphate.Infrared spectra of PPA-modified asphalt with different contents were fitted by a Gaussian function,which makes up for the limitation that the absorption intensity information of each superimposed functional group cannot be obtained directly from the original infrared spectra.Results of this qualitative analysis were further verified by quantitative analysis.The addition of PPA can effectively improve the high and low-temperature performance of asphalt,and the lower the temperature is in the negative temperature zone,the more obvious the improvement is.When PPA content is more than 1%,the improvement of asphalt low-temperature performance is not obvious.