Needle insertion is a common surgical procedure used in diagnosis and treatment.The needle steering technologies make continuous developments in theoretical and practical aspects along with the in-depth research on ne...Needle insertion is a common surgical procedure used in diagnosis and treatment.The needle steering technologies make continuous developments in theoretical and practical aspects along with the in-depth research on needle insertion.It is necessary to summarize and analyze the existing results to promote the future development of theories and applications of needle insertion.Thus,a survey of the state of the art of research is presented on algorithms of needle steering techniques,the surgical robots and devices.Based on the analysis of the needle insertion procedure,the concept of needle steering is defined as a kinematics problem,which is to place the needle at the target and avoid the obstacles.The needle steering techniques,including the artificial potential field method and the nonholonomic model,are introduced to control the needles for improving the accuracy.Based on the quasi-static thinking,the virtual spring model and the cantilever-beam model are developed to calculate the amount of needle deflection and generate the needle path.The phantoms instead of the real tissue are used to verify the models mentioned in most of the experimentations.For the desired needle trajectories,the image-guided robotic devices and some novel needles are presented to achieve the needle steering.Finally,the challenges are provided involving the controllability of the long flexible needle and the properties of soft tissue.The results and investigations can be used for further study on the precision and accuracy of needle insertion.展开更多
This paper presents an automatic compensation algorithm for needle tip displacement in order to keep the needle tip always fixed at the skin entry point in the process of needle orientation in robot-assisted percutane...This paper presents an automatic compensation algorithm for needle tip displacement in order to keep the needle tip always fixed at the skin entry point in the process of needle orientation in robot-assisted percutaneous surgery. The algorithm, based on a two-degree-of-freedom (2-DOF) robot wrist (not the mechanically constrained remote center of motion (RCM) mechanism) and a 3-DOF robot ann, firstly calculates the needle tip displacement caused by rotational motion of robot wrist in the arm coordinate frame using the robotic forward kinematics, and then inversely compensates for the needle tip displace- ment by real-time Cartesian motion of robot arm. The algorithm achieves the function of the RCM and eliminates many mechanical and virtual constraints caused by the RCM mechanism. Experimental result demonstrates that the needle tip displacement is within 1 inm in the process of needle orientation.展开更多
基金supported by National Natural Science Foundation of China (Grant Nos. 51165040,50775119)Visiting Scholar Foundation of Key Lab in University of China (Grant No. GZKF-201020)
文摘Needle insertion is a common surgical procedure used in diagnosis and treatment.The needle steering technologies make continuous developments in theoretical and practical aspects along with the in-depth research on needle insertion.It is necessary to summarize and analyze the existing results to promote the future development of theories and applications of needle insertion.Thus,a survey of the state of the art of research is presented on algorithms of needle steering techniques,the surgical robots and devices.Based on the analysis of the needle insertion procedure,the concept of needle steering is defined as a kinematics problem,which is to place the needle at the target and avoid the obstacles.The needle steering techniques,including the artificial potential field method and the nonholonomic model,are introduced to control the needles for improving the accuracy.Based on the quasi-static thinking,the virtual spring model and the cantilever-beam model are developed to calculate the amount of needle deflection and generate the needle path.The phantoms instead of the real tissue are used to verify the models mentioned in most of the experimentations.For the desired needle trajectories,the image-guided robotic devices and some novel needles are presented to achieve the needle steering.Finally,the challenges are provided involving the controllability of the long flexible needle and the properties of soft tissue.The results and investigations can be used for further study on the precision and accuracy of needle insertion.
文摘This paper presents an automatic compensation algorithm for needle tip displacement in order to keep the needle tip always fixed at the skin entry point in the process of needle orientation in robot-assisted percutaneous surgery. The algorithm, based on a two-degree-of-freedom (2-DOF) robot wrist (not the mechanically constrained remote center of motion (RCM) mechanism) and a 3-DOF robot ann, firstly calculates the needle tip displacement caused by rotational motion of robot wrist in the arm coordinate frame using the robotic forward kinematics, and then inversely compensates for the needle tip displace- ment by real-time Cartesian motion of robot arm. The algorithm achieves the function of the RCM and eliminates many mechanical and virtual constraints caused by the RCM mechanism. Experimental result demonstrates that the needle tip displacement is within 1 inm in the process of needle orientation.