期刊文献+
共找到3,159篇文章
< 1 2 158 >
每页显示 20 50 100
Revolutionary entrapment model of uniformly distributed swarm robots in morphogenetic formation
1
作者 Chen Wang Zhaohui Shi +3 位作者 Minqiang Gu Weicheng Luo Xiaomin Zhu Zhun Fan 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第1期496-509,共14页
This study proposes a method for uniformly revolving swarm robots to entrap multiple targets,which is based on a gene regulatory network,an adaptive decision mechanism,and an improved Vicsek-model.Using the gene regul... This study proposes a method for uniformly revolving swarm robots to entrap multiple targets,which is based on a gene regulatory network,an adaptive decision mechanism,and an improved Vicsek-model.Using the gene regulatory network method,the robots can generate entrapping patterns according to the environmental input,including the positions of the targets and obstacles.Next,an adaptive decision mechanism is proposed,allowing each robot to choose the most well-adapted capture point on the pattern,based on its environment.The robots employ an improved Vicsek-model to maneuver to the planned capture point smoothly,without colliding with other robots or obstacles.The proposed decision mechanism,combined with the improved Vicsek-model,can form a uniform entrapment shape and create a revolving effect around targets while entrapping them.This study also enables swarm robots,with an adaptive pattern formation,to entrap multiple targets in complex environments.Swarm robots can be deployed in the military field of unmanned aerial vehicles’(UAVs)entrapping multiple targets.Simulation experiments demonstrate the feasibility and superiority of the proposed gene regulatory network method. 展开更多
关键词 Swarm intelligence Revolutionary entrapment FLOCKING robots Gene regulatory network Vicsek-model Entrapping multiple targets
下载PDF
Direct 4D printing of functionally graded hydrogel networks for biodegradable,untethered,and multimorphic soft robots
2
作者 Soo Young Cho Dong Hae Ho +1 位作者 Sae Byeok Jo Jeong Ho Cho 《International Journal of Extreme Manufacturing》 SCIE EI CAS CSCD 2024年第2期407-416,共10页
Recent advances in functionally graded additive manufacturing(FGAM)technology have enabled the seamless hybridization of multiple functionalities in a single structure.Soft robotics can become one of the largest benef... Recent advances in functionally graded additive manufacturing(FGAM)technology have enabled the seamless hybridization of multiple functionalities in a single structure.Soft robotics can become one of the largest beneficiaries of these advances,through the design of a facile four-dimensional(4D)FGAM process that can grant an intelligent stimuli-responsive mechanical functionality to the printed objects.Herein,we present a simple binder jetting approach for the 4D printing of functionally graded porous multi-materials(FGMM)by introducing rationally designed graded multiphase feeder beds.Compositionally graded cross-linking agents gradually form stable porous network structures within aqueous polymer particles,enabling programmable hygroscopic deformation without complex mechanical designs.Furthermore,a systematic bed design incorporating additional functional agents enables a multi-stimuli-responsive and untethered soft robot with stark stimulus selectivity.The biodegradability of the proposed 4D-printed soft robot further ensures the sustainability of our approach,with immediate degradation rates of 96.6%within 72 h.The proposed 4D printing concept for FGMMs can create new opportunities for intelligent and sustainable additive manufacturing in soft robotics. 展开更多
关键词 intelligent and sustainable additive manufacturing multi-material four-dimensional printing untethered soft robot multi-stimuli-responsive soft robot biodegradable soft robotics
下载PDF
Neuromorphic circuits based on memristors: endowing robots with a human-like brain
3
作者 Xuemei Wang Fan Yang +7 位作者 Qing Liu Zien Zhang Zhixing Wen Jiangang Chen Qirui Zhang Cheng Wang Ge Wang Fucai Liu 《Journal of Semiconductors》 EI CAS CSCD 2024年第6期47-63,共17页
Robots are widely used,providing significant convenience in daily life and production.With the rapid development of artificial intelligence and neuromorphic computing in recent years,the realization of more intelligen... Robots are widely used,providing significant convenience in daily life and production.With the rapid development of artificial intelligence and neuromorphic computing in recent years,the realization of more intelligent robots through a pro-found intersection of neuroscience and robotics has received much attention.Neuromorphic circuits based on memristors used to construct hardware neural networks have proved to be a promising solution of shattering traditional control limita-tions in the field of robot control,showcasing characteristics that enhance robot intelligence,speed,and energy efficiency.Start-ing with introducing the working mechanism of memristors and peripheral circuit design,this review gives a comprehensive analysis on the biomimetic information processing and biomimetic driving operations achieved through the utilization of neuro-morphic circuits in brain-like control.Four hardware neural network approaches,including digital-analog hybrid circuit design,novel device structure design,multi-regulation mechanism,and crossbar array,are summarized,which can well simulate the motor decision-making mechanism,multi-information integration and parallel control of brain at the hardware level.It will be definitely conductive to promote the application of memristor-based neuromorphic circuits in areas such as intelligent robotics,artificial intelligence,and neural computing.Finally,a conclusion and future prospects are discussed. 展开更多
关键词 neuromorphic devices neuromorphic circuits hardware networks MEMRISTORS humanlike robots
下载PDF
Smart Gait:A Gait Optimization Framework for Hexapod Robots
4
作者 Yunpeng Yin Feng Gao +2 位作者 Qiao Sun Yue Zhao Yuguang Xiao 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2024年第1期146-159,共14页
The current gait planning for legged robots is mostly based on human presets,which cannot match the flexible characteristics of natural mammals.This paper proposes a gait optimization framework for hexapod robots call... The current gait planning for legged robots is mostly based on human presets,which cannot match the flexible characteristics of natural mammals.This paper proposes a gait optimization framework for hexapod robots called Smart Gait.Smart Gait contains three modules:swing leg trajectory optimization,gait period&duty optimization,and gait sequence optimization.The full dynamics of a single leg,and the centroid dynamics of the overall robot are considered in the respective modules.The Smart Gait not only helps the robot to decrease the energy consumption when in locomotion,mostly,it enables the hexapod robot to determine its gait pattern transitions based on its current state,instead of repeating the formalistic clock-set step cycles.Our Smart Gait framework allows the hexapod robot to behave nimbly as a living animal when in 3D movements for the first time.The Smart Gait framework combines offline and online optimizations without any fussy data-driven training procedures,and it can run efficiently on board in real-time after deployment.Various experiments are carried out on the hexapod robot LittleStrong.The results show that the energy consumption is reduced by 15.9%when in locomotion.Adaptive gait patterns can be generated spontaneously both in regular and challenge environments,and when facing external interferences. 展开更多
关键词 Gait optimization Swing trajectory optimization Legged robot Hexapod robot
下载PDF
Advancements in Humanoid Robots: A Comprehensive Review and Future Prospects
5
作者 Yuchuang Tong Haotian Liu Zhengtao Zhang 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2024年第2期301-328,共28页
This paper provides a comprehensive review of the current status, advancements, and future prospects of humanoid robots, highlighting their significance in driving the evolution of next-generation industries. By analy... This paper provides a comprehensive review of the current status, advancements, and future prospects of humanoid robots, highlighting their significance in driving the evolution of next-generation industries. By analyzing various research endeavors and key technologies, encompassing ontology structure,control and decision-making, and perception and interaction, a holistic overview of the current state of humanoid robot research is presented. Furthermore, emerging challenges in the field are identified, emphasizing the necessity for a deeper understanding of biological motion mechanisms, improved structural design,enhanced material applications, advanced drive and control methods, and efficient energy utilization. The integration of bionics, brain-inspired intelligence, mechanics, and control is underscored as a promising direction for the development of advanced humanoid robotic systems. This paper serves as an invaluable resource, offering insightful guidance to researchers in the field,while contributing to the ongoing evolution and potential of humanoid robots across diverse domains. 展开更多
关键词 Future trends and challenges humanoid robots human-robot interaction key technologies potential applications
下载PDF
Simulation Analysis of Deformation Control for Magnetic Soft Medical Robots
6
作者 Jingxi Wang Baoyu Liu +2 位作者 Edmond Q.Wu Jin Ma Ping Li 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2024年第3期794-796,共3页
Dear Editor,This letter presents a biocompatible cross-shaped magnetic soft robot and investigates its deformation mode control strategy through COMSOL modeling and simulation.Magnetic soft robots offer novel avenues ... Dear Editor,This letter presents a biocompatible cross-shaped magnetic soft robot and investigates its deformation mode control strategy through COMSOL modeling and simulation.Magnetic soft robots offer novel avenues for precise treatment within intricate regions of the human body. 展开更多
关键词 ROBOT SIMULATION COMSOL
下载PDF
Heuristic Expanding Disconnected Graph:A Rapid Path Planning Method for Mobile Robots
7
作者 Yong Tao Lian Duan +3 位作者 He Gao Yufan Zhang Yian Song Tianmiao Wang 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2024年第2期68-82,共15页
Existing mobile robots mostly use graph search algorithms for path planning,which suffer from relatively low planning efficiency owing to high redundancy and large computational complexity.Due to the limitations of th... Existing mobile robots mostly use graph search algorithms for path planning,which suffer from relatively low planning efficiency owing to high redundancy and large computational complexity.Due to the limitations of the neighborhood search strategy,the robots could hardly obtain the most optimal global path.A global path planning algorithm,denoted as EDG*,is proposed by expanding nodes using a well-designed expanding disconnected graph operator(EDG)in this paper.Firstly,all obstacles are marked and their corners are located through the map pre-processing.Then,the EDG operator is designed to find points in non-obstruction areas to complete the rapid expansion of disconnected nodes.Finally,the EDG*heuristic iterative algorithm is proposed.It selects the candidate node through a specific valuation function and realizes the node expansion while avoiding collision with a minimum offset.Path planning experiments were conducted in a typical indoor environment and on the public dataset CSM.The result shows that the proposed EDG*reduced the planning time by more than 90%and total length of paths reduced by more than 4.6%.Compared to A*,Dijkstra and JPS,EDG*does not show an exponential explosion effect in map size.The EDG*showed better performance in terms of path smoothness,and collision avoidance.This shows that the EDG*algorithm proposed in this paper can improve the efficiency of path planning and enhance path quality. 展开更多
关键词 Global path planning Mobile robot Expanding disconnected graph Edge node OFFSET
下载PDF
Bionic lightweight design of limb leg units for hydraulic quadruped robots by additive manufacturing and topology optimization
8
作者 Huaizhi Zong Junhui Zhang +6 位作者 Lei Jiang Kun Zhang Jun Shen Zhenyu Lu Ke Wang Yanli Wang Bing Xu 《Bio-Design and Manufacturing》 SCIE EI CAS CSCD 2024年第1期1-13,共13页
Galloping cheetahs,climbing mountain goats,and load hauling horses all show desirable locomotion capability,which motivates the development of quadruped robots.Among various quadruped robots,hydraulically driven quadr... Galloping cheetahs,climbing mountain goats,and load hauling horses all show desirable locomotion capability,which motivates the development of quadruped robots.Among various quadruped robots,hydraulically driven quadruped robots show great potential in unstructured environments due to their discrete landing positions and large payloads.As the most critical movement unit of a quadruped robot,the limb leg unit(LLU)directly affects movement speed and reliability,and requires a compact and lightweight design.Inspired by the dexterous skeleton–muscle systems of cheetahs and humans,this paper proposes a highly integrated bionic actuator system for a better dynamic performance of an LLU.We propose that a cylinder barrel with multiple element interfaces and internal smooth channels is realized using metal additive manufacturing,and hybrid lattice structures are introduced into the lightweight design of the piston rod.In addition,additive manufacturing and topology optimization are incorporated to reduce the redundant material of the structural parts of the LLU.The mechanical properties of the actuator system are verified by numerical simulation and experiments,and the power density of the actuators is far greater than that of cheetah muscle.The mass of the optimized LLU is reduced by 24.5%,and the optimized LLU shows better response time performance when given a step signal,and presents a good trajectory tracking ability with the increase in motion frequency. 展开更多
关键词 Additive manufacturing Bionic lightweight design Limb leg unit Quadruped robot Trajectory tracking
下载PDF
Adaptive Trajectory Tracking Control for Nonholonomic Wheeled Mobile Robots:A Barrier Function Sliding Mode Approach
9
作者 Yunjun Zheng Jinchuan Zheng +3 位作者 Ke Shao Han Zhao Hao Xie Hai Wang 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2024年第4期1007-1021,共15页
The trajectory tracking control performance of nonholonomic wheeled mobile robots(NWMRs)is subject to nonholonomic constraints,system uncertainties,and external disturbances.This paper proposes a barrier function-base... The trajectory tracking control performance of nonholonomic wheeled mobile robots(NWMRs)is subject to nonholonomic constraints,system uncertainties,and external disturbances.This paper proposes a barrier function-based adaptive sliding mode control(BFASMC)method to provide high-precision,fast-response performance and robustness for NWMRs.Compared with the conventional adaptive sliding mode control,the proposed control strategy can guarantee that the sliding mode variables converge to a predefined neighborhood of origin with a predefined reaching time independent of the prior knowledge of the uncertainties and disturbances bounds.Another advantage of the proposed algorithm is that the control gains can be adaptively adjusted to follow the disturbances amplitudes thanks to the barrier function.The benefit is that the overestimation of control gain can be eliminated,resulting in chattering reduction.Moreover,a modified barrier function-like control gain is employed to prevent the input saturation problem due to the physical limit of the actuator.The stability analysis and comparative experiments demonstrate that the proposed BFASMC can ensure the prespecified convergence performance of the NWMR system output variables and strong robustness against uncertainties/disturbances. 展开更多
关键词 Adaptive sliding mode barrier function nonholonomic wheeled mobile robot(NWMR) trajectory tracking control
下载PDF
A finite-time fuzzy adaptive output-feedback fault-tolerant control for underactuated wheeled mobile robots systems
10
作者 Pingfan Liu Shaocheng Tong 《Journal of Automation and Intelligence》 2024年第2期111-118,共8页
This paper investigates the adaptive fuzzy finite-time output-feedback fault-tolerant control (FTC) problemfor a class of nonlinear underactuated wheeled mobile robots (UWMRs) system with intermittent actuatorfaults. ... This paper investigates the adaptive fuzzy finite-time output-feedback fault-tolerant control (FTC) problemfor a class of nonlinear underactuated wheeled mobile robots (UWMRs) system with intermittent actuatorfaults. The UWMR system includes unknown nonlinear dynamics and immeasurable states. Fuzzy logic systems(FLSs) are utilized to work out immeasurable functions. Furthermore, with the support of the backsteppingcontrol technique and adaptive fuzzy state observer, a fuzzy adaptive finite-time output-feedback FTC scheme isdeveloped under the intermittent actuator faults. It is testifying the scheme can ensure the controlled nonlinearUWMRs is stable and the estimation errors are convergent. Finally, the comparison results and simulationvalidate the effectiveness of the proposed fuzzy adaptive finite-time FTC approach. 展开更多
关键词 Underactuated wheeled mobile robots system FINITE-TIME Fuzzy adaptive fault-tolerant control OUTPUT-FEEDBACK Intermittent actuator faults
下载PDF
Finite-Time Sideslip Differentiator-Based LOS Guidance for Robust Path Following of Snake Robots 被引量:2
11
作者 Yang Xiu Dongfang Li +5 位作者 Miaomiao Zhang Hongbin Deng Rob Law Yun Huang Edmond Q.Wu Xin Xu 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2023年第1期239-253,共15页
This paper presents a finite-time sideslip differentiator-based line-of-sight(LOS)guidance method for robust path following of snake robots.Firstly,finite-time stable sideslip differentiator and adaptive LOS guidance ... This paper presents a finite-time sideslip differentiator-based line-of-sight(LOS)guidance method for robust path following of snake robots.Firstly,finite-time stable sideslip differentiator and adaptive LOS guidance method are proposed to counteract sideslip drift caused by cross-track velocity.The proposed differentiator can accurately observe the cross-track error and sideslip angle for snake robots to avoid errors caused by calculating sideslip angle approximately.In our method,the designed piecewise auxiliary function guarantees the finite-time stability of position errors.Secondly,for the case of external disturbances and state constraints,a Barrier Lyapunov functionbased backstepping adaptive path following controller is presented to improve the robot’s robustness.The uniform ultimate boundedness of the closed-loop system is proved by analyzing stability.Additionally,a gait frequency adjustment-based virtual velocity control input is derived to achieve the exponential convergence of the tangential velocity.At last,the availability and superiority of this work are shown through simulation and experiment results. 展开更多
关键词 Line-of-sight(LOS) path following SIDESLIP snake robot
下载PDF
Position Errors and Interference Prediction-Based Trajectory Tracking for Snake Robots 被引量:1
12
作者 Dongfang Li Yilong Zhang +5 位作者 Ping Li Rob Law Zhengrong Xiang Xin Xu Limin Zhu Edmond Q.Wu 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2023年第9期1810-1821,共12页
This work presents a trajectory tracking control method for snake robots.This method eliminates the influence of time-varying interferences on the body and reduces the offset error of a robot with a predetermined traj... This work presents a trajectory tracking control method for snake robots.This method eliminates the influence of time-varying interferences on the body and reduces the offset error of a robot with a predetermined trajectory.The optimized line-of-sight(LOS)guidance strategy drives the robot’s steering angle to maintain its anti-sideslip ability by predicting position errors and interferences.Then,the predictions of system parameters and viscous friction coefficients can compensate for the joint torque control input.The compensation is adopted to enhance the compatibility of a robot within ever-changing environments.Simulation and experimental outcomes show that our work can decrease the fluctuation peak of the tracking errors,reduce adjustment time,and improve accuracy. 展开更多
关键词 Anti-sideslip COMPENSATION snake robot trajectory tracking
下载PDF
Corrosion,mechanical and microstructural properties of aluminum 7075-carbon nanotube nanocomposites for robots in corrosive environments 被引量:1
13
作者 Arun David Satheesh Kumar Gopal +1 位作者 Poovazhagan Lakshmanan Amith Sukumaran Chenbagam 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2023年第6期1140-1151,共12页
The introduction of in-pipe robots for sewage cleaning provides researchers with new options for pipe inspection,such as leakage,crack,gas,and corrosion detection,which are standard applications common in the current ... The introduction of in-pipe robots for sewage cleaning provides researchers with new options for pipe inspection,such as leakage,crack,gas,and corrosion detection,which are standard applications common in the current industrial scenario.The question that is frequently overlooked in all these cases is the inherent resistance of the robots to corrosion.The mechanical,microstructural,and corrosion properties of aluminum 7075 incorporated with various weight percentages(0,0.5wt%,1wt%,and 1.5wt%)of carbon nanotubes(CNTs)are discussed.It is fabricated using a rotational ultrasonication with mechanical stirring(RUMS)-based casting method for improved corrosion resistance without compromising the mechanical properties of the robot.1wt%CNTs-aluminum nanocomposite shows good corrosion and mechanical properties,meeting the requirements imposed by the sewage environment of the robot. 展开更多
关键词 aluminum 7075 carbon nanotubes rotational ultrasonication with mechanical stirring mechanical characterization microstructure robot
下载PDF
Variable Curvature Modeling Method of Soft Continuum Robots with Constraints
14
作者 Yuwang Liu Wenping Shi +3 位作者 Peng Chen Liang Cheng Qing Ding Zhaoyan Deng 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2023年第6期51-61,共11页
The inherent compliance of continuum robots holds great promise in the fields of soft manipulation and safe human–robot interaction.This compliance reduces the risk of damage to the manipulated object and its surroun... The inherent compliance of continuum robots holds great promise in the fields of soft manipulation and safe human–robot interaction.This compliance reduces the risk of damage to the manipulated object and its surroundings.However,continuum robots possess theoretically infinite degrees of freedom,and this high flexibility usually leads to complex deformations when subjected to external forces and positional constraints.Describing these complex deformations is the main challenge in modeling continuum robots.In this study,we investigated a novel variable curvature modeling method for continuum robots,considering external forces and positional constraints.The robot configuration curve is described using the developed mechanical model,and then the robot is fitted to the curve.A ten-section continuum robot prototype with a length of 1 m was developed in order to validate the model.The feasibility and accuracy of the model were verified by the ability of the robot to reach target points and track complex trajectories with a load.This work was able to serve as a new perspective for the design analysis and motion control of continuum robots. 展开更多
关键词 Continuum robots Variable curvature modeling Boundary conditions Nonlinear mechanics
下载PDF
Inverted Modelling:An Effective Way to Support Motion Planning of Legged Mobile Robots
15
作者 Chenyao Zhao Weizhong Guo 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2023年第1期268-279,共12页
This paper presents an effective way to support motion planning of legged mobile robots—Inverted Modelling,based on the equivalent metamorphic mechanism concept.The difference from the previous research is that we he... This paper presents an effective way to support motion planning of legged mobile robots—Inverted Modelling,based on the equivalent metamorphic mechanism concept.The difference from the previous research is that we herein invert the equivalent parallel mechanism.Assuming the leg mechanisms are hybrid links,the body of robot being considered as fixed platform,and ground as moving platform.The motion performance is transformed and measured in the body frame.Terrain and joint limits are used as input parameters to the model,resulting in the representation which is independent of terrains and particular poses in Inverted Modelling.Hence,it can universally be applied to any kind of legged robots as global motion performance framework.Several performance measurements using Inverted Modelling are presented and used in motion performance evaluation.According to the requirements of actual work like motion continuity and stability,motion planning of legged robot can be achieved using different measurements on different terrains.Two cases studies present the simulations of quadruped and hexapod robots walking on rugged roads.The results verify the correctness and effectiveness of the proposed method. 展开更多
关键词 Gait planning Inverted Modelling Legged mobile robot Motion planning WORKSPACE
下载PDF
Internet of robotic things for mobile robots:Concepts,technologies,challenges,applications,and future directions
16
作者 Homayun Kabir Mau-Luen Tham Yoong Choon Chang 《Digital Communications and Networks》 SCIE CSCD 2023年第6期1265-1290,共26页
Nowadays,Multi Robotic System(MRS)consisting of different robot shapes,sizes and capabilities has received significant attention from researchers and are being deployed in a variety of real-world applications.From sen... Nowadays,Multi Robotic System(MRS)consisting of different robot shapes,sizes and capabilities has received significant attention from researchers and are being deployed in a variety of real-world applications.From sensors and actuators improved by communication technologies to powerful computing systems utilizing advanced Artificial Intelligence(AI)algorithms have rapidly driven the development of MRS,so the Internet of Things(IoT)in MRS has become a new topic,namely the Internet of Robotic Things(IoRT).This paper summarizes a comprehensive survey of state-of-the-art technologies for mobile robots,including general architecture,benefits,challenges,practical applications,and future research directions.In addition,remarkable research of i)multirobot navigation,ii)network architecture,routing protocols and communications,and iii)coordination among robots as well as data analysis via external computing(cloud,fog,edge,edge-cloud)are merged with the IoRT architecture according to their applicability.Moreover,security is a long-term challenge for IoRT because of various attack vectors,security flaws,and vulnerabilities.Security threats,attacks,and existing solutions based on IoRT architectures are also under scrutiny.Moreover,the identification of environmental situations that are crucial for all types of IoRT applications,such as the detection of objects,human,and obstacles,is also critically reviewed.Finally,future research directions are given by analyzing the challenges of IoRT in mobile robots. 展开更多
关键词 Multi Robotic System(MRS) Internet of Things(IoT) Internet of Robotic Things(IoRT) Cloud computing Artificial intelligence(AI) Machine learning(ML) Reinforcement learning(RL)
下载PDF
Kernel extreme learning machine‐based general solution to forward kinematics of parallel robots
17
作者 Jun Ma Xuechao Duan Dan Zhang 《CAAI Transactions on Intelligence Technology》 SCIE EI 2023年第3期1002-1013,共12页
The forward kinematics of parallel robots is a challenging issue due to its highly coupled non‐linear relation among branch chains.This paper presents a novel approach to for-ward kinematics of parallel robots based ... The forward kinematics of parallel robots is a challenging issue due to its highly coupled non‐linear relation among branch chains.This paper presents a novel approach to for-ward kinematics of parallel robots based on kernel extreme learning machine(KELM).To tackle with the forward kinematics solution of fully parallel robots,the forward ki-nematics solution of parallel robots is equivalently transformed into a machine learning model first.On this basis,a computational model combining sparrow search algorithm and KELM is then established,which can serve as both regression and classification.Based on SSA‐optimised KELM(SSA‐KELM)established in this study,a binary discriminator for judging the existence of the forward kinematics solution and a multi‐label regression model for predicting the forward kinematics solution are built to obtain the forward kinematics general solution of parallel robots with different structural configurations and parameters.To evaluate the proposed model,a numerical case on this dataset collected by the inverse kinematics model of a typical 6‐DOF parallel robot is conducted,followed by the results manifesting that the binary discriminator with the discriminant accuracy of 88.50%is superior over ELM,KELM,support vector machine and logistic regression.The multi‐label regression model,with the root mean squared error of 0.06 mm for the position and 0.15°for the orientation,outperforms the double‐hidden‐layer back propagation(2‐BP),ELM,KELM and genetic algorithm‐optimised KELM.Furthermore,numerical cases of parallel robots with different structural con-figurations and parameters are compared with state‐of‐the‐art models.Moreover,these results of numerical simulation and experiment on the host computer demonstrate that the proposed model displays its high precision,high robustness and rapid convergence,which provides a candidate for the forward kinematics of parallel robots. 展开更多
关键词 artificial intelligence CLASSIFICATION machine learning regression analysis ROBOTICS
下载PDF
Multitarget Flexible Grasping Detection Method for Robots in Unstructured Environments
18
作者 Qingsong Fan Qijie Rao Haisong Huang 《Computer Modeling in Engineering & Sciences》 SCIE EI 2023年第11期1825-1848,共24页
In present-day industrial settings,where robot arms performtasks in an unstructured environment,theremay exist numerousobjects of various shapes scattered in randompositions,making it challenging for a robot armtoprec... In present-day industrial settings,where robot arms performtasks in an unstructured environment,theremay exist numerousobjects of various shapes scattered in randompositions,making it challenging for a robot armtoprecisely attain the ideal pose to grasp the object.To solve this problem,a multistage robotic arm flexible grasp detection method based on deep learning is proposed.This method first improves the Faster RCNN target detection model,which significantly improves the detection ability of the model for multiscale grasped objects in unstructured scenes.Then,a Squeeze-and-Excitation module is introduced to design a multitarget grasping pose generation network based on a deep convolutional neural network to generate a variety of graspable poses for grasped objects.Finally,a multiobjective IOU mixed area attitude evaluation algorithm is constructed to screen out the optimal grasping area of the grasped object and obtain the optimal grasping posture of the robotic arm.The experimental results show that the accuracy of the target detection network improved by the method proposed in this paper reaches 96.6%,the grasping frame accuracy of the grasping pose generation network reaches 94%and the flexible grasping task of the robotic arm in an unstructured scene in a real environment can be efficiently and accurately implemented. 展开更多
关键词 Unstructured scene ROBOT target detection grab pose detection deep learning
下载PDF
Optimum Design of Stair-Climbing Robots Using Taguchi Method
19
作者 A.Arunkumar S.Ramabalan D.Elayaraja 《Intelligent Automation & Soft Computing》 SCIE 2023年第1期1229-1244,共16页
Environmental issues like pollution are major threats to human health.Many systems are developed to reduce pollution.In this paper,an optimal mobile robot design to reduce pollution in Green supply chain management sy... Environmental issues like pollution are major threats to human health.Many systems are developed to reduce pollution.In this paper,an optimal mobile robot design to reduce pollution in Green supply chain management system.Green supply chain management involves as similating environmentally and eco-nomically feasible solutions into the supply chain life-cycle.Smartness,advanced technologies,and advanced networks are becoming pillars of a sustainable supply chain management system.At the same time,there is much change happening in the logistics industry.They are moving towards a new logistics model.In the new model,robotic logistics has a vital role.The reasons for this change are the rapid growth of the e-commerce business and the shortage of workers.The advantages of using robotic logistics are reduction in human errors,faster delivery speed,better customer satisfaction,more safety for workers,and high workforce adaptability.A robot with rocker-bogie suspension is a six-wheeled mobile platform that has a distinctive potential to keep all wheels on the ground continuously.It has been designed to traverse rough and uneven terrain by distributing the load over its wheels equally.However,there is a limitation to achieving high-speed mobility against vertical barriers.In this research,an optimal design of product delivery wheeled robots for a sustainable supply chain system is proposed to ensure higher adaptability and maximum stability during climbing staircases.The design parameters of the proposed robot are optimized using Taguchi Method.The aim is to get a smooth trajectory of the robot’s center-of-mass.The proposed approach realizes a robot with much-improved stability which can climb over heights more than the size of the wheel(i.e.,3 times the radius of wheels).The results reveal that the modified rocker-bogie system not only increases the stair-climbing capability but also thwarts instability due to overturning of a wheel of the robot. 展开更多
关键词 Green supply chain management robotic logistics stair-climbing wheeled mobile robot optimum design rocker-bogie mechanism taguchi method
下载PDF
Telepresence Robots and Controlling Techniques in Healthcare System
20
作者 Fawad Naseer Muhammad Nasir Khan +1 位作者 Zubair Nawaz Qasim Awais 《Computers, Materials & Continua》 SCIE EI 2023年第3期6623-6639,共17页
In this era of post-COVID-19,humans are psychologically restricted to interact less with other humans.According to the world health organization(WHO),there are many scenarios where human interactions cause severe mult... In this era of post-COVID-19,humans are psychologically restricted to interact less with other humans.According to the world health organization(WHO),there are many scenarios where human interactions cause severe multiplication of viruses from human to human and spread worldwide.Most healthcare systems shifted to isolation during the pandemic and a very restricted work environment.Investigations were done to overcome the remedy,and the researcher developed different techniques and recommended solutions.Telepresence robot was the solution achieved by all industries to continue their operations but with almost zero physical interaction with other humans.It played a vital role in this perspective to help humans to perform daily routine tasks.Healthcare workers can use telepresence robots to interact with patients who visit the healthcare center for initial diagnosis for better healthcare system performance without direct interaction.The presented paper aims to compare different telepresence robots and their different controlling techniques to perform the needful in the respective scenario of healthcare environments.This paper comprehensively analyzes and reviews the applications of presented techniques to control different telepresence robots.However,our feature-wise analysis also points to specific technical,appropriate,and ethical challenges that remain to be solved.The proposed investigation summarizes the need for further multifaceted research on the design and impact of a telepresence robot for healthcare centers,building on new perceptions during the COVID-19 pandemic. 展开更多
关键词 Telepresence robot controlling techniques healthcare center unmanned ground vehicle(UGV) TELEHEALTH
下载PDF
上一页 1 2 158 下一页 到第
使用帮助 返回顶部