In order to make the environment of palmprint recognition more flexible and improve the accuracy of touchless palmprint recognition. This paper proposes a robust, touchless, palmprint recognition system which is based...In order to make the environment of palmprint recognition more flexible and improve the accuracy of touchless palmprint recognition. This paper proposes a robust, touchless, palmprint recognition system which is based on color palmprint images. This system uses skin-color thresholding and hand valley detection algorithm for extracting palmprint. Then, the local binary pattern (LBP) is applied to the palmprint in order to extract the palmprint features. Finally, chi square statistic is used for classification. The experimental results present the equal error rate of 3.7668% and correct recognition rate of 97.0142%. Therefore the results show that this approach is robust and efficient in color palmprint images which are acquired in lighting changes and cluttered background for touch-less palmprint recognition system.展开更多
针对传统掌纹识别方法易受噪声干扰,且旋转鲁棒性差的问题,提出一种采用均匀局部二元模式(Uniform Local Binary Patterns,ULBP)及稀疏表示的掌纹识别方法。该方法利用善于表达图像纹理特征,且具有良好旋转不变性和抗干扰性的ULBP提取...针对传统掌纹识别方法易受噪声干扰,且旋转鲁棒性差的问题,提出一种采用均匀局部二元模式(Uniform Local Binary Patterns,ULBP)及稀疏表示的掌纹识别方法。该方法利用善于表达图像纹理特征,且具有良好旋转不变性和抗干扰性的ULBP提取掌纹图像特征;同时考虑到直接对整幅图像进行ULBP处理会丢失局部纹理,采用先对各图像进行分块,再对各块分别进行ULBP处理的特征提取方案。在分类算法的设计上,本文利用掌纹图像库中训练样本的ULBP特征构造过完备字典,通过求解l1范数意义下的最优化问题实现测试样本的稀疏分解,并提出一种基于统计残差平均的稀疏表示分类方法,实现了测试掌纹图像的分类识别。实验结果表明,本文方法不仅具有良好的旋转及噪声鲁棒性,而且总体识别率明显优于基于PCA及2DPCA的传统稀疏表示分类方法,对于包含5 000031 0人的掌纹数据库,识别率分别提高了8.8%和6.8%。展开更多
针对传统LBP(Local Binary Pattern)算法在DR图像缺陷检测中对噪声异常敏感而导致的缺陷识别率低的问题,在已有的韦伯LBP算法(Weber Local Binary Pattern,WLBP)的基础上,提出改进的WALBP(Weber Adapted Local Binary Patterns)算法。WA...针对传统LBP(Local Binary Pattern)算法在DR图像缺陷检测中对噪声异常敏感而导致的缺陷识别率低的问题,在已有的韦伯LBP算法(Weber Local Binary Pattern,WLBP)的基础上,提出改进的WALBP(Weber Adapted Local Binary Patterns)算法。WALBP算法保留了WLBP算法最后生成二维直方图的特点,对其所用的LBP算子和Lo G(Laplacian of Gaussian)方法进行了改进。WALBP算法更加有效地描述了DR图像的纹理特征,同时有效解决了WLBP算子在进行缺陷检测时直方图维数较多及分类能力不强的问题。通过对多幅铸件DR图像进行实验分析,结果表明,相对于已有的WLBP算法和传统的LBP算法,WALBP算法在缺陷检测上具有更高的识别率,在缺陷识别技术中具有很高的应用价值。展开更多
纹理特征提取是纹理分类中最关键的一步,由于成像条件的不可预知,纹理图像中存在旋转、尺度、噪声等各种因素的变化,给纹理分类的研究工作带来了挑战.为了增强纹理特征提取算法对旋转、尺度和噪声变化的鲁棒性,提出尺度选择完备局部导...纹理特征提取是纹理分类中最关键的一步,由于成像条件的不可预知,纹理图像中存在旋转、尺度、噪声等各种因素的变化,给纹理分类的研究工作带来了挑战.为了增强纹理特征提取算法对旋转、尺度和噪声变化的鲁棒性,提出尺度选择完备局部导数模式(Scale Selective Completed Local Derivative Pattern,SSCLDP).首先,采用自适应中值滤波器对图像进行降噪处理.其次,采用二维高斯滤波器生成该图像的尺度空间.在每个尺度下使用完备局部导数模式(Completed Local Derivative Pattern,CLDP)提取该图像的旋转不变特征,跨尺度取最大值作为该图像的尺度不变特征.将SSCLDP与同类算法在七个公共纹理数据集和热轧带钢图像数据集上进行了实验,实验结果表明,SSCLDP在纹理图像分类和热轧带钢图像分类上有较好的工程应用价值.展开更多
目的针对基于SURF特征点的图像配准算法对颜色单一的彩色图像提取的特征点较少及配准时间复杂度高等问题,提出一种基于融合特征的快速SURF(speed up robust features)配准算法。方法该算法首先提取图像的颜色不变量边缘特征和CS-LBP(cen...目的针对基于SURF特征点的图像配准算法对颜色单一的彩色图像提取的特征点较少及配准时间复杂度高等问题,提出一种基于融合特征的快速SURF(speed up robust features)配准算法。方法该算法首先提取图像的颜色不变量边缘特征和CS-LBP(central symmetry-local binary patterns)纹理特征形成融合特征灰度图,并利用颜色直方图的方差自适应调节融合特征间的权重。其次,在融合特征灰度图上提取SURF(speed up robust features)特征点及描述子。再次,用最近邻匹配法形成粗匹配对,结合改进的快速RANSAC(random sample consensus)算法得到精匹配对。最后,使用最小二乘法求出映射关系用于配准图像。结果本文算法能够在融合特征上提取更稳定的SURF特征点,用该特征点进行配准能提高配准5%精度,且减少时间复杂度15%,实现了对普通场景下图像的快速配准。结论本文算法能提取稳定数量的特征点,提高了精确度与鲁棒性,并通过改进的RANSAC算法提高了执行效率,降低了迭代次数。展开更多
目的随着人脸识别系统应用的日益广泛,提高身份认证的安全性,提升人脸活体检测的有效性已经成为迫切需要解决的问题。针对活体检测中真实用户的照片存在的人脸欺骗问题,提出一种新的解决照片攻击的人脸活体检测算法。方法利用局部二值模...目的随着人脸识别系统应用的日益广泛,提高身份认证的安全性,提升人脸活体检测的有效性已经成为迫切需要解决的问题。针对活体检测中真实用户的照片存在的人脸欺骗问题,提出一种新的解决照片攻击的人脸活体检测算法。方法利用局部二值模式LBP(local binary pattern)、TV-L1(total variation regularization and the robust L1 norm)光流法、光学应变和深度网络实现的人脸活体检测方法。对原始数据进行预处理得到LBP特征图;对LBP特征图提取光流信息,提高对噪声适应的鲁棒性;计算光流的导数得到图像的光学应变图,以表征相邻两帧之间的微纹理性质的微小移动量;通过卷积神经网络模型(CNN)将每个应变图编码成特征向量,最终将特征向量传递给长短期记忆LSTM(long short term memory)模型进行分类,实现真假人脸的判别。结果实验在两个公开的人脸活体检测数据库上进行,并将本文算法与具有代表性的活体检测算法进行对比。在南京航空航天大学(NUAA)人脸活体检测数据库中,算法精度达到99.79%;在Replay-attack数据库中,算法精度达到98.2%,对比实验的结果证明本文算法对照片攻击的识别更加准确。结论本文提出的针对照片攻击的人脸活体检测算法,融合光学应变图像和深度学习模型的优点,使得人脸活体检测更加准确。展开更多
文摘In order to make the environment of palmprint recognition more flexible and improve the accuracy of touchless palmprint recognition. This paper proposes a robust, touchless, palmprint recognition system which is based on color palmprint images. This system uses skin-color thresholding and hand valley detection algorithm for extracting palmprint. Then, the local binary pattern (LBP) is applied to the palmprint in order to extract the palmprint features. Finally, chi square statistic is used for classification. The experimental results present the equal error rate of 3.7668% and correct recognition rate of 97.0142%. Therefore the results show that this approach is robust and efficient in color palmprint images which are acquired in lighting changes and cluttered background for touch-less palmprint recognition system.
文摘针对传统LBP(Local Binary Pattern)算法在DR图像缺陷检测中对噪声异常敏感而导致的缺陷识别率低的问题,在已有的韦伯LBP算法(Weber Local Binary Pattern,WLBP)的基础上,提出改进的WALBP(Weber Adapted Local Binary Patterns)算法。WALBP算法保留了WLBP算法最后生成二维直方图的特点,对其所用的LBP算子和Lo G(Laplacian of Gaussian)方法进行了改进。WALBP算法更加有效地描述了DR图像的纹理特征,同时有效解决了WLBP算子在进行缺陷检测时直方图维数较多及分类能力不强的问题。通过对多幅铸件DR图像进行实验分析,结果表明,相对于已有的WLBP算法和传统的LBP算法,WALBP算法在缺陷检测上具有更高的识别率,在缺陷识别技术中具有很高的应用价值。
文摘纹理特征提取是纹理分类中最关键的一步,由于成像条件的不可预知,纹理图像中存在旋转、尺度、噪声等各种因素的变化,给纹理分类的研究工作带来了挑战.为了增强纹理特征提取算法对旋转、尺度和噪声变化的鲁棒性,提出尺度选择完备局部导数模式(Scale Selective Completed Local Derivative Pattern,SSCLDP).首先,采用自适应中值滤波器对图像进行降噪处理.其次,采用二维高斯滤波器生成该图像的尺度空间.在每个尺度下使用完备局部导数模式(Completed Local Derivative Pattern,CLDP)提取该图像的旋转不变特征,跨尺度取最大值作为该图像的尺度不变特征.将SSCLDP与同类算法在七个公共纹理数据集和热轧带钢图像数据集上进行了实验,实验结果表明,SSCLDP在纹理图像分类和热轧带钢图像分类上有较好的工程应用价值.
文摘目的随着人脸识别系统应用的日益广泛,提高身份认证的安全性,提升人脸活体检测的有效性已经成为迫切需要解决的问题。针对活体检测中真实用户的照片存在的人脸欺骗问题,提出一种新的解决照片攻击的人脸活体检测算法。方法利用局部二值模式LBP(local binary pattern)、TV-L1(total variation regularization and the robust L1 norm)光流法、光学应变和深度网络实现的人脸活体检测方法。对原始数据进行预处理得到LBP特征图;对LBP特征图提取光流信息,提高对噪声适应的鲁棒性;计算光流的导数得到图像的光学应变图,以表征相邻两帧之间的微纹理性质的微小移动量;通过卷积神经网络模型(CNN)将每个应变图编码成特征向量,最终将特征向量传递给长短期记忆LSTM(long short term memory)模型进行分类,实现真假人脸的判别。结果实验在两个公开的人脸活体检测数据库上进行,并将本文算法与具有代表性的活体检测算法进行对比。在南京航空航天大学(NUAA)人脸活体检测数据库中,算法精度达到99.79%;在Replay-attack数据库中,算法精度达到98.2%,对比实验的结果证明本文算法对照片攻击的识别更加准确。结论本文提出的针对照片攻击的人脸活体检测算法,融合光学应变图像和深度学习模型的优点,使得人脸活体检测更加准确。