期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Robust non-negative matrix factorization 被引量:4
1
作者 Lijun ZHANG Zhengguang CHEN +1 位作者 Miao ZHENG Xiaofei HE 《Frontiers of Electrical and Electronic Engineering in China》 CSCD 2011年第2期192-200,共9页
Non-negative matrix factorization(NMF)is a recently popularized technique for learning partsbased,linear representations of non-negative data.The traditional NMF is optimized under the Gaussian noise or Poisson noise ... Non-negative matrix factorization(NMF)is a recently popularized technique for learning partsbased,linear representations of non-negative data.The traditional NMF is optimized under the Gaussian noise or Poisson noise assumption,and hence not suitable if the data are grossly corrupted.To improve the robustness of NMF,a novel algorithm named robust nonnegative matrix factorization(RNMF)is proposed in this paper.We assume that some entries of the data matrix may be arbitrarily corrupted,but the corruption is sparse.RNMF decomposes the non-negative data matrix as the summation of one sparse error matrix and the product of two non-negative matrices.An efficient iterative approach is developed to solve the optimization problem of RNMF.We present experimental results on two face databases to verify the effectiveness of the proposed method. 展开更多
关键词 robust non-negative matrix factorization(RNMF) convex optimization dimensionality reduction
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部