This paper investigates the problem of robust output regulation control with prospected transient property for strict feedback systems.By employing the internal model principle,the robust output regulation problem wit...This paper investigates the problem of robust output regulation control with prospected transient property for strict feedback systems.By employing the internal model principle,the robust output regulation problem with a prospected property can be transformed to a robust stabilization problem with a new output constraint.Then,by constructing the speed function and adopting barrier Lyapunov function technique,the dynamic feedback controller can be designed not only to drive error output of the closed-loop system entering into a prescribed performance bound within a given finite time,but also to achieve that the error output converges to zero asymptotically.The effectiveness of the results is illustrated by a simulation example.展开更多
This paper investigates the semi-global robust output regulation problem for a class of uncertain nonlinear systems via a sampled-data output feedback control law.What makes the results interesting is that the nonline...This paper investigates the semi-global robust output regulation problem for a class of uncertain nonlinear systems via a sampled-data output feedback control law.What makes the results interesting is that the nonlinearities of the proposed system do not have to satisfy linear growth condition and the uncertain parameters of our system are allowed to belong to some arbitrarily large prescribed compact subset.Two cases are considered.The first case is that the exogenous signal is constant.The second case is that the exogenous signal is time-varying and bounded.For the first case,the authors solve the problem exactly in the sense that the tracking error approaches zero asymptotically.For the second case,the authors solve the problem practically in the sense that the steady-state tracking error can be made arbitrarily small.Finally,an example is given to illustrate the effectiveness of our approach.展开更多
Recently, the robust output regulation problem for continuous-time linear systems with both input and communication time-delays was studied. This paper will further present the results on the robust output regulation ...Recently, the robust output regulation problem for continuous-time linear systems with both input and communication time-delays was studied. This paper will further present the results on the robust output regulation problem for discrete-time linear systems with input and communication delays. The motivation of this paper comes from two aspects. First, it is known that the solvability of the output regulation problem for linear systems is dictated by two matrix equations. While, for delay-free systems, these two matrix equations are same for both continuous-time systems and discretetime systems, they are different for continuous-time time-delay systems and discrete-time time-delay systems. Second, the stabilization methods for continuous-time time-delay systems and discrete-time time-delay systems are also somehow different. Thus, an independent treatment of the robust output regulation problem for discrete-time time-delay systems will be useful and necessary.展开更多
In this paper, the robust analysis and design of leader-following output regulation for multi-agent systems described by general linear models is given in presence of timevarying delay and model uncertainty. To this a...In this paper, the robust analysis and design of leader-following output regulation for multi-agent systems described by general linear models is given in presence of timevarying delay and model uncertainty. To this aim, a new regulation protocol for the closed-loop multi-agent system under a directed graph is proposed. An important specification of the proposed protocol is to guarantee the leader-following output regulation for uncertain multi-agent systems with both stable and unstable agents. Since many signals can be approximated by a combination of the stationary and ramp signals, the presented results work for adequate variety of the leaders. The analysis and design conditions are presented in terms of certain matrix inequalities. The method proposed can be used for both stationary and ramp leaders. Simulation results are presented to show the effectiveness of the proposed method.展开更多
基金supported by the National Natural Science Foundation of China(61873219)。
文摘This paper investigates the problem of robust output regulation control with prospected transient property for strict feedback systems.By employing the internal model principle,the robust output regulation problem with a prospected property can be transformed to a robust stabilization problem with a new output constraint.Then,by constructing the speed function and adopting barrier Lyapunov function technique,the dynamic feedback controller can be designed not only to drive error output of the closed-loop system entering into a prescribed performance bound within a given finite time,but also to achieve that the error output converges to zero asymptotically.The effectiveness of the results is illustrated by a simulation example.
基金the Research Grants Council of the Hong Kong Special Administration Region under Grant No.14202619the National Natural Science Foundation of China under Grant No.61633007the National Natural Science Foundation of China under Grant No.61973260。
文摘This paper investigates the semi-global robust output regulation problem for a class of uncertain nonlinear systems via a sampled-data output feedback control law.What makes the results interesting is that the nonlinearities of the proposed system do not have to satisfy linear growth condition and the uncertain parameters of our system are allowed to belong to some arbitrarily large prescribed compact subset.Two cases are considered.The first case is that the exogenous signal is constant.The second case is that the exogenous signal is time-varying and bounded.For the first case,the authors solve the problem exactly in the sense that the tracking error approaches zero asymptotically.For the second case,the authors solve the problem practically in the sense that the steady-state tracking error can be made arbitrarily small.Finally,an example is given to illustrate the effectiveness of our approach.
基金supported by the Research Grants Council of the Hong Kong Special Administration Region under Grant No.412813
文摘Recently, the robust output regulation problem for continuous-time linear systems with both input and communication time-delays was studied. This paper will further present the results on the robust output regulation problem for discrete-time linear systems with input and communication delays. The motivation of this paper comes from two aspects. First, it is known that the solvability of the output regulation problem for linear systems is dictated by two matrix equations. While, for delay-free systems, these two matrix equations are same for both continuous-time systems and discretetime systems, they are different for continuous-time time-delay systems and discrete-time time-delay systems. Second, the stabilization methods for continuous-time time-delay systems and discrete-time time-delay systems are also somehow different. Thus, an independent treatment of the robust output regulation problem for discrete-time time-delay systems will be useful and necessary.
基金supported by the Natural Science and Engineering Research Council(NSERC)of Canada(RES0001828)
文摘In this paper, the robust analysis and design of leader-following output regulation for multi-agent systems described by general linear models is given in presence of timevarying delay and model uncertainty. To this aim, a new regulation protocol for the closed-loop multi-agent system under a directed graph is proposed. An important specification of the proposed protocol is to guarantee the leader-following output regulation for uncertain multi-agent systems with both stable and unstable agents. Since many signals can be approximated by a combination of the stationary and ramp signals, the presented results work for adequate variety of the leaders. The analysis and design conditions are presented in terms of certain matrix inequalities. The method proposed can be used for both stationary and ramp leaders. Simulation results are presented to show the effectiveness of the proposed method.