(Multichannel)Singular spectrum analysis is considered as one of the most effective methods for seismic incoherent noise suppression.It utilizes the low-rank feature of seismic signal and regards the noise suppression...(Multichannel)Singular spectrum analysis is considered as one of the most effective methods for seismic incoherent noise suppression.It utilizes the low-rank feature of seismic signal and regards the noise suppression as a low-rank reconstruction problem.However,in some cases the seismic geophones receive some erratic disturbances and the amplitudes are dramatically larger than other receivers.The presence of this kind of noise,called erratic noise,makes singular spectrum analysis(SSA)reconstruction unstable and has undesirable effects on the final results.We robustify the low-rank reconstruction of seismic data by a reweighted damped SSA(RD-SSA)method.It incorporates the damped SSA,an improved version of SSA,into a reweighted framework.The damping operator is used to weaken the artificial disturbance introduced by the low-rank projection of both erratic and random noise.The central idea of the RD-SSA method is to iteratively approximate the observed data with the quadratic norm for the first iteration and the Tukeys bisquare norm for the rest iterations.The RD-SSA method can suppress seismic incoherent noise and keep the reconstruction process robust to the erratic disturbance.The feasibility of RD-SSA is validated via both synthetic and field data examples.展开更多
Consider the problems of frequency-invariant beampattern optimization and robustness in broadband beamforming.Firstly,a global optimization algorithm,which is based on phase compensation of the array manifolds,is used...Consider the problems of frequency-invariant beampattern optimization and robustness in broadband beamforming.Firstly,a global optimization algorithm,which is based on phase compensation of the array manifolds,is used to construct the frequency-invariant beampattern.Compared with some methods presented recently,the proposed algorithm is not only available to get the global optimal solution,but also simple for physical realization.Meanwhile,a robust adaptive broadband beamforming algorithm is also derived by reconstructing the covariance matrix.The essence of the proposed algorithm is to estimate the space-frequency spectrum using Capon estimator firstly,then integrate over a region separated from the desired signal direction to reconstruct the interference-plus-noise covariance matrix,and finally caleulate the adaptive beamformer weights with the reconstructed matrix.The design of beamformer is formulated as a convex optimization problem to be solved.Simulation results show that the performance of the proposed algorithm is almost always close to the optimal value across a wide range of signal to noise ratios.展开更多
The problem of linear systems subject to actuator faults(outage,loss of efectiveness and stuck),parameter uncertainties and external disturbances is considered.An active fault compensation control law is designed wh...The problem of linear systems subject to actuator faults(outage,loss of efectiveness and stuck),parameter uncertainties and external disturbances is considered.An active fault compensation control law is designed which utilizes compensation in such a way that uncertainties,disturbances and the occurrence of actuator faults are account for.The main idea is designing a robust adaptive output feedback controller by automatically compensating the fault dynamics to render the close-loop stability.According to the information from the adaptive mechanism,the updating control law is derived such that all the parameters of the unknown input signal are bounded.Furthermore,a disturbance decoupled fault reconstruction scheme is presented to evaluate the severity of the fault and to indicate how fault accommodation should be implemented.The advantage of fault compensation is that the dynamics caused by faults can be accommodated online.The proposed design method is illustrated on a rocket fairing structural-acoustic model.展开更多
基金supported by the National Natural Science Foundation of China under grant no.42374133the Beijing Nova Program under grant no.2022056+1 种基金the Fundamental Research Funds for the Central Universities under grant no.2462020YXZZ006the Young Elite Scientists Sponsorship Program by CAST(YESS)under grant no.2018QNRC001。
文摘(Multichannel)Singular spectrum analysis is considered as one of the most effective methods for seismic incoherent noise suppression.It utilizes the low-rank feature of seismic signal and regards the noise suppression as a low-rank reconstruction problem.However,in some cases the seismic geophones receive some erratic disturbances and the amplitudes are dramatically larger than other receivers.The presence of this kind of noise,called erratic noise,makes singular spectrum analysis(SSA)reconstruction unstable and has undesirable effects on the final results.We robustify the low-rank reconstruction of seismic data by a reweighted damped SSA(RD-SSA)method.It incorporates the damped SSA,an improved version of SSA,into a reweighted framework.The damping operator is used to weaken the artificial disturbance introduced by the low-rank projection of both erratic and random noise.The central idea of the RD-SSA method is to iteratively approximate the observed data with the quadratic norm for the first iteration and the Tukeys bisquare norm for the rest iterations.The RD-SSA method can suppress seismic incoherent noise and keep the reconstruction process robust to the erratic disturbance.The feasibility of RD-SSA is validated via both synthetic and field data examples.
基金supported by the National Natural Science Foundation of China(51279043,61201411)the Fundamental Research Funds for the Central Universities(HEUCF120502)the National Key Laboratory on Underwater Acoustic Technology Foundation of China(9140C200203110C2001)
文摘Consider the problems of frequency-invariant beampattern optimization and robustness in broadband beamforming.Firstly,a global optimization algorithm,which is based on phase compensation of the array manifolds,is used to construct the frequency-invariant beampattern.Compared with some methods presented recently,the proposed algorithm is not only available to get the global optimal solution,but also simple for physical realization.Meanwhile,a robust adaptive broadband beamforming algorithm is also derived by reconstructing the covariance matrix.The essence of the proposed algorithm is to estimate the space-frequency spectrum using Capon estimator firstly,then integrate over a region separated from the desired signal direction to reconstruct the interference-plus-noise covariance matrix,and finally caleulate the adaptive beamformer weights with the reconstructed matrix.The design of beamformer is formulated as a convex optimization problem to be solved.Simulation results show that the performance of the proposed algorithm is almost always close to the optimal value across a wide range of signal to noise ratios.
基金supported by National Natural Science Foundation of China (No.61174053)the Specialized Research Fund for the Doctoral Program of Higher Education of China (No.20100172110023
文摘The problem of linear systems subject to actuator faults(outage,loss of efectiveness and stuck),parameter uncertainties and external disturbances is considered.An active fault compensation control law is designed which utilizes compensation in such a way that uncertainties,disturbances and the occurrence of actuator faults are account for.The main idea is designing a robust adaptive output feedback controller by automatically compensating the fault dynamics to render the close-loop stability.According to the information from the adaptive mechanism,the updating control law is derived such that all the parameters of the unknown input signal are bounded.Furthermore,a disturbance decoupled fault reconstruction scheme is presented to evaluate the severity of the fault and to indicate how fault accommodation should be implemented.The advantage of fault compensation is that the dynamics caused by faults can be accommodated online.The proposed design method is illustrated on a rocket fairing structural-acoustic model.