Silicon-based materials have demonstrated remarkable potential in high-energy-density batteries owing to their high theoretical capacity.However,the significant volume expansion of silicon seriously hinders its utiliz...Silicon-based materials have demonstrated remarkable potential in high-energy-density batteries owing to their high theoretical capacity.However,the significant volume expansion of silicon seriously hinders its utilization as a lithium-ion anode.Herein,a functionalized high-toughness polyimide(PDMI) is synthesized by copolymerizing the 4,4'-Oxydiphthalic anhydride(ODPA) with 4,4'-oxydianiline(ODA),2,3-diaminobenzoic acid(DABA),and 1,3-bis(3-aminopropyl)-tetramethyl disiloxane(DMS).The combination of rigid benzene rings and flexible oxygen groups(-O-) in the PDMI molecular chain via a rigidness/softness coupling mechanism contributes to high toughness.The plentiful polar carboxyl(-COOH) groups establish robust bonding strength.Rapid ionic transport is achieved by incorporating the flexible siloxane segment(Si-O-Si),which imparts high molecular chain motility and augments free volume holes to facilitate lithium-ion transport(9.8 × 10^(-10) cm^(2) s^(-1) vs.16 × 10^(-10) cm^(2) s~(-1)).As expected,the SiO_x@PDMI-1.5 electrode delivers brilliant long-term cycle performance with a remarkable capacity retention of 85% over 500 cycles at 1.3 A g^(-1).The well-designed functionalized polyimide also significantly enhances the electrochemical properties of Si nanoparticles electrode.Meanwhile,the assembled SiO_x@PDMI-1.5/NCM811 full cell delivers a high retention of 80% after 100 cycles.The perspective of the binder design strategy based on polyimide modification delivers a novel path toward high-capacity electrodes for high-energy-density batteries.展开更多
BACKGROUND Pain in the back or pelvis or fear of back pain may affect the timing or cocontraction of the core muscles.In both static and dynamic movements,the Sahrmann core stability test provides an assessment of cor...BACKGROUND Pain in the back or pelvis or fear of back pain may affect the timing or cocontraction of the core muscles.In both static and dynamic movements,the Sahrmann core stability test provides an assessment of core muscle activation and a person's ability to stabilize the lumbopelvic complex.Preparatory cues and images can be used to increase the activation of these muscles.To attain optimal movement patterns,it will be necessary to determine what cueing will give the most effective results for core stability.AIM To investigate the effects of external and internal cues on core muscle activation during the Sahrmann five-level core stability test.METHODS Total 68 participants(21.83±3.47 years)were randomly allocated to an external(n=35)or internal cue group(n=33).Participants performed the Sahrmann fivelevel core stability test without a cue as baseline and the five-level stability exercises with an internal or external cue.External cue group received a pressure biofeedback unit(PBU),and the internal cue group received an audio cue.A Delsys Trigno^(TM)surface electromyography unit was used for muscle activation from the rectus abdominis,external oblique,and transverse abdominis/internal oblique muscles.RESULTS Linear mixed effects model analysis showed that cueing had a significant effect on core muscle activation(P=0.001);however,there was no significant difference between cue types(internal or external)(P=0.130).CONCLUSION Both external and internal cueing have significant effects on core muscle activation during the Sahrmann five-level core stability test and the PBU does not create higher muscle activation than internal cueing.展开更多
Air vehicles undergo variations in structural mass and stiffness because of fuel consumption and the failure of structural components, which might lead to serious influences on the aeroelastic characteristics. An appr...Air vehicles undergo variations in structural mass and stiffness because of fuel consumption and the failure of structural components, which might lead to serious influences on the aeroelastic characteristics. An approach for aeroelastic robust stability analysis taking into account the perturbations of structural mass and stiffness is developed. Applying the perturbation method and harmonic unsteady aerodynamic forces, the frequency-domain linear fractal transformation (LFT) representation of perturbed aeroelastic system is modeled. Then, the robust stability is analyzed by using the structured singular value ,u-method. The numerical results of a bi-spar wing show its effectiveness and low computational time in dealing with the robust problems with mass and stiffness perturbations. In engineering analysis for solving aeroelastic problems, the robust approach can be applied to flutter analysis for airplane with the fuel load variation and taking the damage conditions into consideration.展开更多
The concept of edge polynomials with variable length is introduced. Stability of such polynomials is analyzed. Under the condition that one extreme of the edge is stable, the stability radius of edge polynomials with ...The concept of edge polynomials with variable length is introduced. Stability of such polynomials is analyzed. Under the condition that one extreme of the edge is stable, the stability radius of edge polynomials with variable length is characterized in terms of the real spectral radius of the matrix H -1 ( f 0) H (g) , where both H (f 0) and H (g) are Hurwitz like matrices. Based on this result, stability radius of control systems with interval type plants and first order controllers are determined.展开更多
A type of stochastic interval delayed Hopfield neural networks as du(t) = [-AIu(t) + WIf(t,u(t)) + WIτf7τ(uτ(t)] dt +σ(t, u(t), uτ(t)) dw(t) on t≥0 with initiated value u(s) = ζ(s) on - τ≤s≤0 has been studie...A type of stochastic interval delayed Hopfield neural networks as du(t) = [-AIu(t) + WIf(t,u(t)) + WIτf7τ(uτ(t)] dt +σ(t, u(t), uτ(t)) dw(t) on t≥0 with initiated value u(s) = ζ(s) on - τ≤s≤0 has been studied. By using the Razumikhin theorem and Lyapunov functions, some sufficient conditions of their globally asymptotic robust stability and global exponential stability on such systems have been given. All the results obtained are generalizations of some recent ones reported in the literature for uncertain neural networks with constant delays or their certain cases.展开更多
The robust stability and robust stabilization problems for discrete singular systems with interval time-varying delay and linear fractional uncertainty are discussed. A new delay-dependent criterion is established for...The robust stability and robust stabilization problems for discrete singular systems with interval time-varying delay and linear fractional uncertainty are discussed. A new delay-dependent criterion is established for the nominal discrete singular delay systems to be regular, causal and stable by employing the linear matrix inequality (LMI) approach. It is shown that the newly proposed criterion can provide less conservative results than some existing ones. Then, with this criterion, the problems of robust stability and robust stabilization for uncertain discrete singular delay systems are solved, and the delay-dependent LMI conditions are obtained. Finally, numerical examples are given to illustrate the effectiveness of the proposed approach.展开更多
This paper deals with the problem of robust stability for continuous-time singular systems with state delay and parameter uncertainty. The uncertain singular systems with delay considered in this paper are assumed to ...This paper deals with the problem of robust stability for continuous-time singular systems with state delay and parameter uncertainty. The uncertain singular systems with delay considered in this paper are assumed to be regular and impulse free.By decomposing the systems into slow and fast subsystems,a robust delay-dependent asymptotic stability criteria based on linear matrix inequality is proposed, which is derived by using Lyapunov-Krasovskii functionals, neither model transformation nor bounding for cross terms is required in the derivation of our delay-dependent result. The robust delay-dependent stability criterion proposed in this paper is a sufficient condition. Finally, numerical examples and Matlab simulation are provided to illustrate the effectiveness of the proposed method.展开更多
The robust stability and stabilization, and H-infinity control problems for discrete-time Markovian jump singular systems with parameter uncertainties are discussed. Based on the restricted system equivalent (r.s.e....The robust stability and stabilization, and H-infinity control problems for discrete-time Markovian jump singular systems with parameter uncertainties are discussed. Based on the restricted system equivalent (r.s.e.) transformation and by introducing new state vectors, the singular system is transformed into a discrete-time Markovian jump standard linear system, and the linear matrix inequality (LMI) conditions for the discrete-time Markovian jump singular systems to be regular, causal, stochastically stable, and stochastically stable with 7- disturbance attenuation are obtained, respectively. With these conditions, the robust state feedback stochastic stabilization problem and H-infinity control problem are solved, and the LMI conditions are obtained. A numerical example illustrates the effectiveness of the method given in the oaoer.展开更多
The problem of delay-dependent criteria for the robust stability of neutral systems with time-varying structured uncertainties and identi-cal neutral-delay and discrete-delay is concerned. A criterion for nominal syst...The problem of delay-dependent criteria for the robust stability of neutral systems with time-varying structured uncertainties and identi-cal neutral-delay and discrete-delay is concerned. A criterion for nominal systems is presented by taking the relationship between the terms in the Leibniz-Newton formula into account, which is described by some free-weighting matrices. In addition, this criterion is extended to robust stability of the systems with time-varying structured uncertainties. All of the criteria are based on linear matrix inequality such that it is easy to calculate the upper bound of the time-delay and the free-weighting matrices. Numerical examples illustrate the effectiveness and the improvement over the existing results.展开更多
This paper addresses the problems of the robust stability and robust stabilization of a discrete-time system with polytopic uncertainties. A new and simple method is presented to directly decouple the Lyapunov matrix ...This paper addresses the problems of the robust stability and robust stabilization of a discrete-time system with polytopic uncertainties. A new and simple method is presented to directly decouple the Lyapunov matrix and the system dynamic matrix. Combining this method with the parameter-dependent Lyapunov function approach yields new criteria that include some existing ones as special cases. A numerical example illustrates the improvement over the existing ones.展开更多
Based on input-output approach, the robust stability and stabilization problems for uncertain singular systems with time-varying delays are investigated. The parameter uncertainties are assumed to be norm-bounded and ...Based on input-output approach, the robust stability and stabilization problems for uncertain singular systems with time-varying delays are investigated. The parameter uncertainties are assumed to be norm-bounded and the time-varying delays include both discrete delay and distributed delay. By introducing a new input-output model, the time-delay system is embedded in a family of systems with a forward system without time delay and a dynamical feedback uncertainty. A sufficient and necessary condition, which guarantees the system regular, impulse-free and stable for all admissible uncertainties, is obtained. Based on the strict linear matrix inequality, the desired robust state feedback controller is also obtained. Finally, a numerical example is provided to demonstrate the application of the proposed method.展开更多
To alleviate the conservativeness of the stability criterion for Takagi-Sugeno (T-S) fuzzy time-delay systems, a new delay-dependent stability criterion was proposed by introducing a new augmented Lyapunov function ...To alleviate the conservativeness of the stability criterion for Takagi-Sugeno (T-S) fuzzy time-delay systems, a new delay-dependent stability criterion was proposed by introducing a new augmented Lyapunov function with an additional triple-integral term, which was firstly u3ed to derive the stability criterion for T-S fuzzy time-delay systems. By the same approach, the robust stability issue for fuzzy time-delay systems with uncertain parameters was also considered. On the other hand, in order to enhance the design flexibility, a new design approach for uncertain fuzzy time-delay systems under imperfect premise matching was also proposed, which allows the fuzzy controller to employ different membership functions from the fuzzy time-delay model. By the numerical examples, the proposed stability conditions are less conservative in the sense of getting larger allowable time-delay and obtaining smaller feedback control gains. For instance, when the allowable time-delay increases from 7.3 s to 12 s for an uncertain T-S fuzzy control system with time-delay, the norm of the feedback gains decreases from (34.299 2, 38.560 3) to (10.073 3, 11.349 0), respectively. Meanwhile, the effectiveness of the proposed design method was illustrated by the last example with the robustly stable curves of system state under the initial condition of x(0) = [3 -1].展开更多
The delay-dependent robust stability of uncertain linear neutral systems with delays is investigated. Both discrete-delay-dependent/neutral-delay-independent and neutral-/discrete- delay-dependent stability criteria w...The delay-dependent robust stability of uncertain linear neutral systems with delays is investigated. Both discrete-delay-dependent/neutral-delay-independent and neutral-/discrete- delay-dependent stability criteria will be developed. The proposed stability criteria are formulated in the form of linear matrix inequalities and it is easy to check the robust stability of the considered systems. By introducing certain Lyapunov-Krasovskii functional the mathematical development of our result avoids model transformation and bounding for cross terms, which lead to conservatism. Finally, numerical example is given to indicate the improvement over some existing results.展开更多
The robust stability test of time-delay systems with interval parameters can be concluded into the robust stability of the interval quasipolynomials. It has been revealed that the robust stability of the quasipolynomi...The robust stability test of time-delay systems with interval parameters can be concluded into the robust stability of the interval quasipolynomials. It has been revealed that the robust stability of the quasipolynomials depends on that of their edge polynomials. This paper transforms the interval quasipolynomials into two-dimensional (2-D) interval polynomials (2-D s-z hybrid polynomials), proves that the robust stability of interval 2-D polynomials are sufficient for the stability of given quasipolynomials. Thus, the stability test of interval quasipolynomials can be completed in 2-D s-z domain instead of classical 1-D s domain. The 2-D s-z hybrid polynomials should have different forms under the time delay properties of given quasipolynomials. The stability test proposed by the paper constructs an edge test set from Kharitonov vertex polynomials to reduce the number of testing edge polynomials. The 2-D algebraic tests are provided for the stability test of vertex 2-D polynomials and edge 2-D polynomials family. To verify the results of the paper to be correct and valid, the simulations based on proposed results and comparison with other presented results are given.展开更多
In this paper, the global exponential robust stability of neural networks with ume-varying delays is investigated. By using nonnegative matrix theory and the Halanay inequality, a new sufficient condition for global e...In this paper, the global exponential robust stability of neural networks with ume-varying delays is investigated. By using nonnegative matrix theory and the Halanay inequality, a new sufficient condition for global exponential robust stability is presented. It is shown that the obtained result is different from or improves some existing ones reported in the literatures. Finally, some numerical examples and a simulation are given to show the effectiveness of the obtained result.展开更多
This paper concerns the robust stability analysis of uncertain systems with time delays as random variables drawn from some probability distribution. The delay-distribution-dependent criteria for the exponential stabi...This paper concerns the robust stability analysis of uncertain systems with time delays as random variables drawn from some probability distribution. The delay-distribution-dependent criteria for the exponential stability of the original system in mean square sense are achieved by Lyapunov functional method and the linear matrix inequality (LMI) technique. The proposed approach involves neither free weighting matrices nor any model transformation, and it shows that the new criteria can provide less conservative results than some existing ones. Numerical examples are given to demonstrate the effectiveness and the benefits of the proposed method.展开更多
By using power mapping(s =v^m),stability analysis of fractional order polynomials was simplified to the stability analysis of expanded degree integer order polynomials in the first Riemann sheet.However,more investiga...By using power mapping(s =v^m),stability analysis of fractional order polynomials was simplified to the stability analysis of expanded degree integer order polynomials in the first Riemann sheet.However,more investigation is needed for revealing properties of power mapping and demonstration of conformity of Hurwitz stability under power mapping of fractional order characteristic polynomials.Contributions of this study have two folds: Firstly,this paper demonstrates conservation of root argument and magnitude relations under power mapping of characteristic polynomials and thus substantiates validity of Hurwitz stability under power mapping of fractional order characteristic polynomials.This also ensures implications of edge theorem for fractional order interval systems.Secondly,in control engineering point of view,numerical robust stability analysis approaches based on the consideration of minimum argument roots of edge and vertex polynomials are presented.For the computer-aided design of fractional order interval control systems,the minimum argument root principle is applied for a finite set of edge and vertex polynomials,which are sampled from parametric uncertainty box.Several illustrative examples are presented to discuss effectiveness of these approaches.展开更多
By using the quasi-Lyapunov function, some sufficient conditions of global exponential stability for impulsive systems are established, which is the basis for the following discussion. Then, by employing Riccati inequ...By using the quasi-Lyapunov function, some sufficient conditions of global exponential stability for impulsive systems are established, which is the basis for the following discussion. Then, by employing Riccati inequality and Hamilton-Jacobi inequality approach, some sufficient conditions of robust exponential stability for uncertain linear/nonlinear impulsive systems are derived, respectively. Finally, some examples are given to illustrate the applications of the theory.展开更多
The problems of robust stability and stabilization via memoryless state feedback for a class of discrete-time switched singular systems with time-varying delays and linear fractional uncertainties are investigated.By ...The problems of robust stability and stabilization via memoryless state feedback for a class of discrete-time switched singular systems with time-varying delays and linear fractional uncertainties are investigated.By constructing a novel switched Lyapunov-Krasovskii functional,a delay-dependent criterion for the unforced system to be regular,causal and uniformly asymptotically stable is established in terms of linear matrix inequalities(LMIs).An explicit expression for the desired memoryless state feedback stabilization controller is also given.The merits of the proposed criteria lie in their less conservativeness and relative simplicity,which are achieved by considering additionally useful terms(ignored in previous methods) when estimating the upper bound of the forward difference of the Lyapunov-Krasovskii functional and by avoiding utilizing any model augmentation transformation.Some numerical examples are provided to illustrate the validity of the proposed methods.展开更多
In this paper,the global robust exponential stability is considered for a class of neural networks with parametric uncer- tainties and time-varying delay.By using Lyapunov functional method,and by resorting to the new...In this paper,the global robust exponential stability is considered for a class of neural networks with parametric uncer- tainties and time-varying delay.By using Lyapunov functional method,and by resorting to the new technique for estimating the upper bound of the derivative of the Lyapunov functional,some less conservative exponential stability criteria are derived in terms of linear matrix inequalities (LMIs).Numerical examples are presented to show the effectiveness of the proposed method.展开更多
基金supported by the National Natural Science Foundation of China (51673017)the National Natural Science Foundation of China (21404005)+1 种基金the Fundamental Research Funds for the Central Universities (XK1802-2)the Natural Science Foundation of Jiangsu Province (BK20150273)。
文摘Silicon-based materials have demonstrated remarkable potential in high-energy-density batteries owing to their high theoretical capacity.However,the significant volume expansion of silicon seriously hinders its utilization as a lithium-ion anode.Herein,a functionalized high-toughness polyimide(PDMI) is synthesized by copolymerizing the 4,4'-Oxydiphthalic anhydride(ODPA) with 4,4'-oxydianiline(ODA),2,3-diaminobenzoic acid(DABA),and 1,3-bis(3-aminopropyl)-tetramethyl disiloxane(DMS).The combination of rigid benzene rings and flexible oxygen groups(-O-) in the PDMI molecular chain via a rigidness/softness coupling mechanism contributes to high toughness.The plentiful polar carboxyl(-COOH) groups establish robust bonding strength.Rapid ionic transport is achieved by incorporating the flexible siloxane segment(Si-O-Si),which imparts high molecular chain motility and augments free volume holes to facilitate lithium-ion transport(9.8 × 10^(-10) cm^(2) s^(-1) vs.16 × 10^(-10) cm^(2) s~(-1)).As expected,the SiO_x@PDMI-1.5 electrode delivers brilliant long-term cycle performance with a remarkable capacity retention of 85% over 500 cycles at 1.3 A g^(-1).The well-designed functionalized polyimide also significantly enhances the electrochemical properties of Si nanoparticles electrode.Meanwhile,the assembled SiO_x@PDMI-1.5/NCM811 full cell delivers a high retention of 80% after 100 cycles.The perspective of the binder design strategy based on polyimide modification delivers a novel path toward high-capacity electrodes for high-energy-density batteries.
文摘BACKGROUND Pain in the back or pelvis or fear of back pain may affect the timing or cocontraction of the core muscles.In both static and dynamic movements,the Sahrmann core stability test provides an assessment of core muscle activation and a person's ability to stabilize the lumbopelvic complex.Preparatory cues and images can be used to increase the activation of these muscles.To attain optimal movement patterns,it will be necessary to determine what cueing will give the most effective results for core stability.AIM To investigate the effects of external and internal cues on core muscle activation during the Sahrmann five-level core stability test.METHODS Total 68 participants(21.83±3.47 years)were randomly allocated to an external(n=35)or internal cue group(n=33).Participants performed the Sahrmann fivelevel core stability test without a cue as baseline and the five-level stability exercises with an internal or external cue.External cue group received a pressure biofeedback unit(PBU),and the internal cue group received an audio cue.A Delsys Trigno^(TM)surface electromyography unit was used for muscle activation from the rectus abdominis,external oblique,and transverse abdominis/internal oblique muscles.RESULTS Linear mixed effects model analysis showed that cueing had a significant effect on core muscle activation(P=0.001);however,there was no significant difference between cue types(internal or external)(P=0.130).CONCLUSION Both external and internal cueing have significant effects on core muscle activation during the Sahrmann five-level core stability test and the PBU does not create higher muscle activation than internal cueing.
基金National Natural Science Foundation of China (10432040, 90716006)
文摘Air vehicles undergo variations in structural mass and stiffness because of fuel consumption and the failure of structural components, which might lead to serious influences on the aeroelastic characteristics. An approach for aeroelastic robust stability analysis taking into account the perturbations of structural mass and stiffness is developed. Applying the perturbation method and harmonic unsteady aerodynamic forces, the frequency-domain linear fractal transformation (LFT) representation of perturbed aeroelastic system is modeled. Then, the robust stability is analyzed by using the structured singular value ,u-method. The numerical results of a bi-spar wing show its effectiveness and low computational time in dealing with the robust problems with mass and stiffness perturbations. In engineering analysis for solving aeroelastic problems, the robust approach can be applied to flutter analysis for airplane with the fuel load variation and taking the damage conditions into consideration.
文摘The concept of edge polynomials with variable length is introduced. Stability of such polynomials is analyzed. Under the condition that one extreme of the edge is stable, the stability radius of edge polynomials with variable length is characterized in terms of the real spectral radius of the matrix H -1 ( f 0) H (g) , where both H (f 0) and H (g) are Hurwitz like matrices. Based on this result, stability radius of control systems with interval type plants and first order controllers are determined.
基金This project was supported by the National Natural Science Foundation of China (60074008, 60274007, 60274026) National Doctor foundaction of China (20010487005).
文摘A type of stochastic interval delayed Hopfield neural networks as du(t) = [-AIu(t) + WIf(t,u(t)) + WIτf7τ(uτ(t)] dt +σ(t, u(t), uτ(t)) dw(t) on t≥0 with initiated value u(s) = ζ(s) on - τ≤s≤0 has been studied. By using the Razumikhin theorem and Lyapunov functions, some sufficient conditions of their globally asymptotic robust stability and global exponential stability on such systems have been given. All the results obtained are generalizations of some recent ones reported in the literature for uncertain neural networks with constant delays or their certain cases.
基金supported by Research Foundation of Education Bureau of Shannxi Province, PRC(No.2010JK400)
文摘The robust stability and robust stabilization problems for discrete singular systems with interval time-varying delay and linear fractional uncertainty are discussed. A new delay-dependent criterion is established for the nominal discrete singular delay systems to be regular, causal and stable by employing the linear matrix inequality (LMI) approach. It is shown that the newly proposed criterion can provide less conservative results than some existing ones. Then, with this criterion, the problems of robust stability and robust stabilization for uncertain discrete singular delay systems are solved, and the delay-dependent LMI conditions are obtained. Finally, numerical examples are given to illustrate the effectiveness of the proposed approach.
文摘This paper deals with the problem of robust stability for continuous-time singular systems with state delay and parameter uncertainty. The uncertain singular systems with delay considered in this paper are assumed to be regular and impulse free.By decomposing the systems into slow and fast subsystems,a robust delay-dependent asymptotic stability criteria based on linear matrix inequality is proposed, which is derived by using Lyapunov-Krasovskii functionals, neither model transformation nor bounding for cross terms is required in the derivation of our delay-dependent result. The robust delay-dependent stability criterion proposed in this paper is a sufficient condition. Finally, numerical examples and Matlab simulation are provided to illustrate the effectiveness of the proposed method.
基金Postdoctoral Science Foundation of China (No. 20060400980)Postdoctoral Science Foundation of Shandong Province(No. 200603015)National Science Foundation of China (No. 10671112)
文摘The robust stability and stabilization, and H-infinity control problems for discrete-time Markovian jump singular systems with parameter uncertainties are discussed. Based on the restricted system equivalent (r.s.e.) transformation and by introducing new state vectors, the singular system is transformed into a discrete-time Markovian jump standard linear system, and the linear matrix inequality (LMI) conditions for the discrete-time Markovian jump singular systems to be regular, causal, stochastically stable, and stochastically stable with 7- disturbance attenuation are obtained, respectively. With these conditions, the robust state feedback stochastic stabilization problem and H-infinity control problem are solved, and the LMI conditions are obtained. A numerical example illustrates the effectiveness of the method given in the oaoer.
文摘The problem of delay-dependent criteria for the robust stability of neutral systems with time-varying structured uncertainties and identi-cal neutral-delay and discrete-delay is concerned. A criterion for nominal systems is presented by taking the relationship between the terms in the Leibniz-Newton formula into account, which is described by some free-weighting matrices. In addition, this criterion is extended to robust stability of the systems with time-varying structured uncertainties. All of the criteria are based on linear matrix inequality such that it is easy to calculate the upper bound of the time-delay and the free-weighting matrices. Numerical examples illustrate the effectiveness and the improvement over the existing results.
基金This work was supported in part by the Doctor Subject Foundation of China (No. 20050533015)the National Science Foundation of China(No. 60425310,60574014).
文摘This paper addresses the problems of the robust stability and robust stabilization of a discrete-time system with polytopic uncertainties. A new and simple method is presented to directly decouple the Lyapunov matrix and the system dynamic matrix. Combining this method with the parameter-dependent Lyapunov function approach yields new criteria that include some existing ones as special cases. A numerical example illustrates the improvement over the existing ones.
基金Project supported by the Key Program of the National NaturalScience Foundation of China (No. 60434020)the National Natural Science Foundation of China (No. 60604003)
文摘Based on input-output approach, the robust stability and stabilization problems for uncertain singular systems with time-varying delays are investigated. The parameter uncertainties are assumed to be norm-bounded and the time-varying delays include both discrete delay and distributed delay. By introducing a new input-output model, the time-delay system is embedded in a family of systems with a forward system without time delay and a dynamical feedback uncertainty. A sufficient and necessary condition, which guarantees the system regular, impulse-free and stable for all admissible uncertainties, is obtained. Based on the strict linear matrix inequality, the desired robust state feedback controller is also obtained. Finally, a numerical example is provided to demonstrate the application of the proposed method.
基金Project(61273095)supported by the National Natural Science Foundation of ChinaProject(135225)supported by the Academy of Finland
文摘To alleviate the conservativeness of the stability criterion for Takagi-Sugeno (T-S) fuzzy time-delay systems, a new delay-dependent stability criterion was proposed by introducing a new augmented Lyapunov function with an additional triple-integral term, which was firstly u3ed to derive the stability criterion for T-S fuzzy time-delay systems. By the same approach, the robust stability issue for fuzzy time-delay systems with uncertain parameters was also considered. On the other hand, in order to enhance the design flexibility, a new design approach for uncertain fuzzy time-delay systems under imperfect premise matching was also proposed, which allows the fuzzy controller to employ different membership functions from the fuzzy time-delay model. By the numerical examples, the proposed stability conditions are less conservative in the sense of getting larger allowable time-delay and obtaining smaller feedback control gains. For instance, when the allowable time-delay increases from 7.3 s to 12 s for an uncertain T-S fuzzy control system with time-delay, the norm of the feedback gains decreases from (34.299 2, 38.560 3) to (10.073 3, 11.349 0), respectively. Meanwhile, the effectiveness of the proposed design method was illustrated by the last example with the robustly stable curves of system state under the initial condition of x(0) = [3 -1].
基金This work was supported by the National Natural Science Foundation of China(No. 60473120).
文摘The delay-dependent robust stability of uncertain linear neutral systems with delays is investigated. Both discrete-delay-dependent/neutral-delay-independent and neutral-/discrete- delay-dependent stability criteria will be developed. The proposed stability criteria are formulated in the form of linear matrix inequalities and it is easy to check the robust stability of the considered systems. By introducing certain Lyapunov-Krasovskii functional the mathematical development of our result avoids model transformation and bounding for cross terms, which lead to conservatism. Finally, numerical example is given to indicate the improvement over some existing results.
基金This project was supported by the National Science Foundation of China (60572093).
文摘The robust stability test of time-delay systems with interval parameters can be concluded into the robust stability of the interval quasipolynomials. It has been revealed that the robust stability of the quasipolynomials depends on that of their edge polynomials. This paper transforms the interval quasipolynomials into two-dimensional (2-D) interval polynomials (2-D s-z hybrid polynomials), proves that the robust stability of interval 2-D polynomials are sufficient for the stability of given quasipolynomials. Thus, the stability test of interval quasipolynomials can be completed in 2-D s-z domain instead of classical 1-D s domain. The 2-D s-z hybrid polynomials should have different forms under the time delay properties of given quasipolynomials. The stability test proposed by the paper constructs an edge test set from Kharitonov vertex polynomials to reduce the number of testing edge polynomials. The 2-D algebraic tests are provided for the stability test of vertex 2-D polynomials and edge 2-D polynomials family. To verify the results of the paper to be correct and valid, the simulations based on proposed results and comparison with other presented results are given.
基金supported by 973 Programs (No.2008CB317110)the Key Project of Chinese Ministry of Education (No.107098)+1 种基金Sichuan Province Project for Applied Basic Research (No.2008JY0052)the Project for Academic Leader and Group of UESTC
文摘In this paper, the global exponential robust stability of neural networks with ume-varying delays is investigated. By using nonnegative matrix theory and the Halanay inequality, a new sufficient condition for global exponential robust stability is presented. It is shown that the obtained result is different from or improves some existing ones reported in the literatures. Finally, some numerical examples and a simulation are given to show the effectiveness of the obtained result.
基金supported by National Natural Science Foundation of China (No. 60874030)Natural Science Foundation of Jiangsu Province (No. BK2010293)+1 种基金Jiangsu Government Scholarship for Overseas StudiesNatural Science Foundation of the Jiangsu Higher Education Institutions of China (No. 09KJB510018,No. 07KJB510125)
文摘This paper concerns the robust stability analysis of uncertain systems with time delays as random variables drawn from some probability distribution. The delay-distribution-dependent criteria for the exponential stability of the original system in mean square sense are achieved by Lyapunov functional method and the linear matrix inequality (LMI) technique. The proposed approach involves neither free weighting matrices nor any model transformation, and it shows that the new criteria can provide less conservative results than some existing ones. Numerical examples are given to demonstrate the effectiveness and the benefits of the proposed method.
文摘By using power mapping(s =v^m),stability analysis of fractional order polynomials was simplified to the stability analysis of expanded degree integer order polynomials in the first Riemann sheet.However,more investigation is needed for revealing properties of power mapping and demonstration of conformity of Hurwitz stability under power mapping of fractional order characteristic polynomials.Contributions of this study have two folds: Firstly,this paper demonstrates conservation of root argument and magnitude relations under power mapping of characteristic polynomials and thus substantiates validity of Hurwitz stability under power mapping of fractional order characteristic polynomials.This also ensures implications of edge theorem for fractional order interval systems.Secondly,in control engineering point of view,numerical robust stability analysis approaches based on the consideration of minimum argument roots of edge and vertex polynomials are presented.For the computer-aided design of fractional order interval control systems,the minimum argument root principle is applied for a finite set of edge and vertex polynomials,which are sampled from parametric uncertainty box.Several illustrative examples are presented to discuss effectiveness of these approaches.
文摘By using the quasi-Lyapunov function, some sufficient conditions of global exponential stability for impulsive systems are established, which is the basis for the following discussion. Then, by employing Riccati inequality and Hamilton-Jacobi inequality approach, some sufficient conditions of robust exponential stability for uncertain linear/nonlinear impulsive systems are derived, respectively. Finally, some examples are given to illustrate the applications of the theory.
基金supported by the National Natural Science Foundation of China(6090402060835001)the Jiangsu Planned Projects for Postdoctoral Research Funds(0802010C)
文摘The problems of robust stability and stabilization via memoryless state feedback for a class of discrete-time switched singular systems with time-varying delays and linear fractional uncertainties are investigated.By constructing a novel switched Lyapunov-Krasovskii functional,a delay-dependent criterion for the unforced system to be regular,causal and uniformly asymptotically stable is established in terms of linear matrix inequalities(LMIs).An explicit expression for the desired memoryless state feedback stabilization controller is also given.The merits of the proposed criteria lie in their less conservativeness and relative simplicity,which are achieved by considering additionally useful terms(ignored in previous methods) when estimating the upper bound of the forward difference of the Lyapunov-Krasovskii functional and by avoiding utilizing any model augmentation transformation.Some numerical examples are provided to illustrate the validity of the proposed methods.
基金Natural Science Foundation of Henan Education Department (No.2007120005).
文摘In this paper,the global robust exponential stability is considered for a class of neural networks with parametric uncer- tainties and time-varying delay.By using Lyapunov functional method,and by resorting to the new technique for estimating the upper bound of the derivative of the Lyapunov functional,some less conservative exponential stability criteria are derived in terms of linear matrix inequalities (LMIs).Numerical examples are presented to show the effectiveness of the proposed method.