Watermarking algorithms that use convolution neural networks have exhibited good robustness in studies of deep learning networks.However,after embedding watermark signals by convolution,the feature fusion eficiency of...Watermarking algorithms that use convolution neural networks have exhibited good robustness in studies of deep learning networks.However,after embedding watermark signals by convolution,the feature fusion eficiency of convolution is relatively low;this can easily lead to distortion in the embedded image.When distortion occurs in medical images,especially in diffusion tensor images(DTIs),the clinical value of the DTI is lost.To address this issue,a robust watermarking algorithm for DTIs implemented by fusing convolution with a Transformer is proposed to ensure the robustness of the watermark and the consistency of sampling distance,which enhances the quality of the reconstructed image of the watermarked DTIs after embedding the watermark signals.In the watermark-embedding network,Ti-weighted(Tlw)images are used as prior knowledge.The correlation between T1w images and the original DTI is proposed to calculate the most significant features from the T1w images by using the Transformer mechanism.The maximum of the correlation is used as the most significant feature weight to improve the quality of the reconstructed DTI.In the watermark extraction network,the most significant watermark features from the watermarked DTI are adequately learned by the Transformer to robustly extract the watermark signals from the watermark features.Experimental results show that the average peak signal-to-noise ratio of the watermarked DTI reaches 50.47 dB,the diffusion characteristics such as mean diffusivity and fractional anisotropy remain unchanged,and the main axis deflection angleαAc is close to 1.Our proposed algorithm can effectively protect the copyright of the DTI and barely affects the clinical diagnosis.展开更多
A robust digital watermarking algorithm is proposed based on quaternion wavelet transform(QWT) and discrete cosine transform(DCT) for copyright protection of color images. The luminance component Y of a host color ima...A robust digital watermarking algorithm is proposed based on quaternion wavelet transform(QWT) and discrete cosine transform(DCT) for copyright protection of color images. The luminance component Y of a host color image in YIQ space is decomposed by QWT, and then the coefficients of four low-frequency subbands are transformed by DCT. An original binary watermark scrambled by Arnold map and iterated sine chaotic system is embedded into the mid-frequency DCT coefficients of the subbands. In order to improve the performance of the proposed algorithm against rotation attacks, a rotation detection scheme is implemented before watermark extracting. The experimental results demonstrate that the proposed watermarking scheme shows strong robustness not only against common image processing attacks but also against arbitrary rotation attacks.展开更多
基金Project supported by the National Natural Science Foundation of China(No.62062023)the Guizhou Science and Technology Plan Project of China(No.ZK[2021]-YB314)the Stadholder Foundation of Guizhou Province,China(No.2007(14))。
文摘Watermarking algorithms that use convolution neural networks have exhibited good robustness in studies of deep learning networks.However,after embedding watermark signals by convolution,the feature fusion eficiency of convolution is relatively low;this can easily lead to distortion in the embedded image.When distortion occurs in medical images,especially in diffusion tensor images(DTIs),the clinical value of the DTI is lost.To address this issue,a robust watermarking algorithm for DTIs implemented by fusing convolution with a Transformer is proposed to ensure the robustness of the watermark and the consistency of sampling distance,which enhances the quality of the reconstructed image of the watermarked DTIs after embedding the watermark signals.In the watermark-embedding network,Ti-weighted(Tlw)images are used as prior knowledge.The correlation between T1w images and the original DTI is proposed to calculate the most significant features from the T1w images by using the Transformer mechanism.The maximum of the correlation is used as the most significant feature weight to improve the quality of the reconstructed DTI.In the watermark extraction network,the most significant watermark features from the watermarked DTI are adequately learned by the Transformer to robustly extract the watermark signals from the watermark features.Experimental results show that the average peak signal-to-noise ratio of the watermarked DTI reaches 50.47 dB,the diffusion characteristics such as mean diffusivity and fractional anisotropy remain unchanged,and the main axis deflection angleαAc is close to 1.Our proposed algorithm can effectively protect the copyright of the DTI and barely affects the clinical diagnosis.
基金supported by the National Natural Science Foundation of China(Nos.61601467,61379102,61502498,U1433105 and U1433120)the Fundamental Research Funds for the Central Universities(3122017044)
文摘A robust digital watermarking algorithm is proposed based on quaternion wavelet transform(QWT) and discrete cosine transform(DCT) for copyright protection of color images. The luminance component Y of a host color image in YIQ space is decomposed by QWT, and then the coefficients of four low-frequency subbands are transformed by DCT. An original binary watermark scrambled by Arnold map and iterated sine chaotic system is embedded into the mid-frequency DCT coefficients of the subbands. In order to improve the performance of the proposed algorithm against rotation attacks, a rotation detection scheme is implemented before watermark extracting. The experimental results demonstrate that the proposed watermarking scheme shows strong robustness not only against common image processing attacks but also against arbitrary rotation attacks.