For a class of linear discrete-time systems that is subject to randomly occurred networked packet loss in industrial cyber physical systems, a novel robust model predictive control method with active compensation mech...For a class of linear discrete-time systems that is subject to randomly occurred networked packet loss in industrial cyber physical systems, a novel robust model predictive control method with active compensation mechanism was proposed. The probability distribution of packet loss is described as the Bernoulli distributed white sequences. By using the Lyapunov stability theory, the existing sufficient conditions of the controller are derived from solving a group of linear matrix inequalities. Moreover, dropout-rate with uncertainty and unknown dropout-rate are also considered, which can greatly reduce the conservativeness of the controller. The designed robust model predictive control method not only efficiently eliminates the negative effects of the networked data loss in industrial cyber physical systems but also ensures the stability of closed-loop system. Two examples were provided to illustrate the superiority and effectiveness of the proposed method.展开更多
The influence of a deep excavation on existing shield tunnels nearby is a vital issue in tunnelling engineering.Whereas,there lacks robust methods to predict excavation-induced tunnel displacements.In this study,an au...The influence of a deep excavation on existing shield tunnels nearby is a vital issue in tunnelling engineering.Whereas,there lacks robust methods to predict excavation-induced tunnel displacements.In this study,an auto machine learning(AutoML)-based approach is proposed to precisely solve the issue.Seven input parameters are considered in the database covering two physical aspects,namely soil property,and spatial characteristics of the deep excavation.The 10-fold cross-validation method is employed to overcome the scarcity of data,and promote model’s robustness.Six genetic algorithm(GA)-ML models are established as well for comparison.The results indicated that the proposed AutoML model is a comprehensive model that integrates efficiency and robustness.Importance analysis reveals that the ratio of the average shear strength to the vertical effective stress E_(ur)/σ′_(v),the excavation depth H,and the excavation width B are the most influential variables for the displacements.Finally,the AutoML model is further validated by practical engineering.The prediction results are in a good agreement with monitoring data,signifying that our model can be applied in real projects.展开更多
Effective source-load prediction and reasonable dispatching are crucial to realize the economic and reliable operations of integrated energy systems(IESs).They can overcome the challenges introduced by the uncertainti...Effective source-load prediction and reasonable dispatching are crucial to realize the economic and reliable operations of integrated energy systems(IESs).They can overcome the challenges introduced by the uncertainties of new energies and various types of loads in the IES.Accordingly,a robust optimal dispatching method for the IES based on a robust economic model predictive control(REMPC)strategy considering source-load power interval prediction is proposed.First,an operation model of the IES is established,and an interval prediction model based on the bidirectional long short-term memory network optimized by beetle antenna search and bootstrap is formulated and applied to predict the photovoltaic power and the cooling,heating,and electrical loads.Then,an optimal dispatching scheme based on REMPC is devised for the IES.The source-load interval prediction results are used to improve the robustness of the REPMC and reduce the influence of source-load uncertainties on dispatching.An actual IES case is selected to conduct simulations;the results show that compared with other prediction techniques,the proposed method has higher prediction interval coverage probability and prediction interval normalized averaged width.Moreover,the operational cost of the IES is decreased by the REMPC strategy.With the devised dispatching scheme,the ability of the IES to handle the dispatching risk caused by prediction errors is enhanced.Improved dispatching robustness and operational economy are also achieved.展开更多
The thermal induced errors can account for as much as 70% of the dimensional errors on a workpiece. Accurate modeling of errors is an essential part of error compensation. Base on analyzing the existing approaches of ...The thermal induced errors can account for as much as 70% of the dimensional errors on a workpiece. Accurate modeling of errors is an essential part of error compensation. Base on analyzing the existing approaches of the thermal error modeling for machine tools, a new approach of regression orthogonal design is proposed, which combines the statistic theory with machine structures, surrounding condition, engineering judgements, and experience in modeling. A whole computation and analysis procedure is given. Therefore, the model got from this method are more robust and practical than those got from the present method that depends on the modeling data completely. At last more than 100 applications of CNC turning center with only one thermal error model are given. The cutting diameter variation reduces from more than 35 μm to about 12 μm with the orthogonal regression modeling and compensation of thermal error.展开更多
To accommodate wind power as safely as possible and deal with the uncertainties of the output power of winddriven generators,a min-max-min two-stage robust optimization model is presented,considering the unit commitme...To accommodate wind power as safely as possible and deal with the uncertainties of the output power of winddriven generators,a min-max-min two-stage robust optimization model is presented,considering the unit commitment,source-network load collaboration,and control of the load demand response.After the constraint functions are linearized,the original problem is decomposed into the main problem and subproblem as a matrix using the strong dual method.The minimum-maximum of the original problem was continuously maximized using the iterative method,and the optimal solution was finally obtained.The constraint conditions expressed by the matrix may reduce the calculation time,and the upper and lower boundaries of the original problem may rapidly converge.The results of the example show that the injected nodes of the wind farms in the power grid should be selected appropriately;otherwise,it is easy to cause excessive accommodation of wind power at some nodes,leading to a surge in reserve costs and the load demand response is continuously optimized to reduce the inverse peak regulation characteristics of wind power.Thus,the most economical optimization scheme for the worst scenario of the output power of the generators is obtained,which proves the economy and reliability of the two-stage robust optimization method.展开更多
In this paper, a robust model predictive control approach is proposed for a class of uncertain systems with time-varying, linear fractional transformation perturbations. By adopting a sequence of feedback control laws...In this paper, a robust model predictive control approach is proposed for a class of uncertain systems with time-varying, linear fractional transformation perturbations. By adopting a sequence of feedback control laws instead of a single one, the control performance can be improved and the region of attraction can be enlarged compared with the existing model predictive control (MPC) approaches. Moreover, a synthesis approach of MPC is developed to achieve high performance with lower on-line computational burden. The effectiveness of the proposed approach is verified by simulation examples.展开更多
Because of vehicle's external disturbances and model uncertainties,robust control algorithms have obtained popularity in vehicle stability control.The robust control usually gives up performance in order to guarantee...Because of vehicle's external disturbances and model uncertainties,robust control algorithms have obtained popularity in vehicle stability control.The robust control usually gives up performance in order to guarantee the robustness of the control algorithm,therefore an improved robust internal model control(IMC) algorithm blending model tracking and internal model control is put forward for active steering system in order to reach high performance of yaw rate tracking with certain robustness.The proposed algorithm inherits the good model tracking ability of the IMC control and guarantees robustness to model uncertainties.In order to separate the design process of model tracking from the robustness design process,the improved 2 degree of freedom(DOF) robust internal model controller structure is given from the standard Youla parameterization.Simulations of double lane change maneuver and those of crosswind disturbances are conducted for evaluating the robust control algorithm,on the basis of a nonlinear vehicle simulation model with a magic tyre model.Results show that the established 2-DOF robust IMC method has better model tracking ability and a guaranteed level of robustness and robust performance,which can enhance the vehicle stability and handling,regardless of variations of the vehicle model parameters and the external crosswind interferences.Contradiction between performance and robustness of active steering control algorithm is solved and higher control performance with certain robustness to model uncertainties is obtained.展开更多
Because of the tire nonlinearity and vehicle's parameters'uncertainties,robust control methods based on the worst cases,such as H_∞,μsynthesis,have been widely used in active front steering control,however,in orde...Because of the tire nonlinearity and vehicle's parameters'uncertainties,robust control methods based on the worst cases,such as H_∞,μsynthesis,have been widely used in active front steering control,however,in order to guarantee the stability of active front steering system(AFS)controller,the robust control is at the cost of performance so that the robust controller is a little conservative and has low performance for AFS control.In this paper,a generalized internal model robust control(GIMC)that can overcome the contradiction between performance and stability is used in the AFS control.In GIMC,the Youla parameterization is used in an improved way.And GIMC controller includes two sections:a high performance controller designed for the nominal vehicle model and a robust controller compensating the vehicle parameters'uncertainties and some external disturbances.Simulations of double lane change(DLC)maneuver and that of braking on split-μroad are conducted to compare the performance and stability of the GIMC control,the nominal performance PID controller and the H_∞controller.Simulation results show that the high nominal performance PID controller will be unstable under some extreme situations because of large vehicle's parameters variations,H_∞controller is conservative so that the performance is a little low,and only the GIMC controller overcomes the contradiction between performance and robustness,which can both ensure the stability of the AFS controller and guarantee the high performance of the AFS controller.Therefore,the GIMC method proposed for AFS can overcome some disadvantages of control methods used by current AFS system,that is,can solve the instability of PID or LQP control methods and the low performance of the standard H_∞controller.展开更多
Due to unforeseen climate change,complicated chronic diseases,and mutation of viruses’hospital administration’s top challenge is to know about the Length of stay(LOS)of different diseased patients in the hospitals.H...Due to unforeseen climate change,complicated chronic diseases,and mutation of viruses’hospital administration’s top challenge is to know about the Length of stay(LOS)of different diseased patients in the hospitals.Hospital management does not exactly know when the existing patient leaves the hospital;this information could be crucial for hospital management.It could allow them to take more patients for admission.As a result,hospitals face many problems managing available resources and new patients in getting entries for their prompt treatment.Therefore,a robust model needs to be designed to help hospital administration predict patients’LOS to resolve these issues.For this purpose,a very large-sized data(more than 2.3 million patients’data)related to New-York Hospitals patients and containing information about a wide range of diseases including Bone-Marrow,Tuberculosis,Intestinal Transplant,Mental illness,Leukaemia,Spinal cord injury,Trauma,Rehabilitation,Kidney and Alcoholic Patients,HIV Patients,Malignant Breast disorder,Asthma,Respiratory distress syndrome,etc.have been analyzed to predict the LOS.We selected six Machine learning(ML)models named:Multiple linear regression(MLR),Lasso regression(LR),Ridge regression(RR),Decision tree regression(DTR),Extreme gradient boosting regression(XGBR),and Random Forest regression(RFR).The selected models’predictive performance was checked using R square andMean square error(MSE)as the performance evaluation criteria.Our results revealed the superior predictive performance of the RFRmodel,both in terms of RS score(92%)and MSE score(5),among all selected models.By Exploratory data analysis(EDA),we conclude that maximumstay was between 0 to 5 days with the meantime of each patient 5.3 days and more than 50 years old patients spent more days in the hospital.Based on the average LOS,results revealed that the patients with diagnoses related to birth complications spent more days in the hospital than other diseases.This finding could help predict the future length of hospital stay of new patients,which will help the hospital administration estimate and manage their resources efficiently.展开更多
In this paper, we propose a robust mixture regression model based on the skew scale mixtures of normal distributions (RMR-SSMN) which can accommodate asymmetric, heavy-tailed and contaminated data better. For the vari...In this paper, we propose a robust mixture regression model based on the skew scale mixtures of normal distributions (RMR-SSMN) which can accommodate asymmetric, heavy-tailed and contaminated data better. For the variable selection problem, the penalized likelihood approach with a new combined penalty function which balances the SCAD and l<sub>2</sub> penalty is proposed. The adjusted EM algorithm is presented to get parameter estimates of RMR-SSMN models at a faster convergence rate. As simulations show, our mixture models are more robust than general FMR models and the new combined penalty function outperforms SCAD for variable selection. Finally, the proposed methodology and algorithm are applied to a real data set and achieve reasonable results.展开更多
In view of the uncertainty in the location selection of logistics distribution center for the fresh agricultural products,the present study established a robust model based on the maximization of principal component s...In view of the uncertainty in the location selection of logistics distribution center for the fresh agricultural products,the present study established a robust model based on the maximization of principal component score taking budget cost parameters as an example.In the process of model solving,the interval form of the uncertain set was used to clarify the constraint conditions,to transform into a certain 0-1 integer linear programming model,so as to solve with the aid of LINGO software.Finally,through studying the location selection of logistics distribution center for fresh agricultural products in the Beijing-Tianjin-Hebei region,it analyzed the application of the robust model and tested the validity of the model.展开更多
As traditional Chinese medicines,Fritillaria from different origins are very similar and it is difficult to distinguish them.In this study,the laser-induced breakdown spectroscopy combined with learning vector quantiz...As traditional Chinese medicines,Fritillaria from different origins are very similar and it is difficult to distinguish them.In this study,the laser-induced breakdown spectroscopy combined with learning vector quantization(LIBS-LVQ)was proposed to distinguish the powdered samples of Fritillaria cirrhosa and non-Fritillaria cirrhosa.We also studied the performance of linear discriminant analysis,and support vector machine on the same data set.Among these three classifiers,LVQ had the highest correct classification rate of 99.17%.The experimental results demonstrated that the LIBS-LVQ model could be used to differentiate the powdered samples of Fritillaria cirrhosa and non-Fritillaria cirrhosa.展开更多
Although industrial processes often perform perfectly under design conditions, they may deviate from the optimal operating point owing to parameters drift, environmental disturbances, etc. Thus, it is necessary to dev...Although industrial processes often perform perfectly under design conditions, they may deviate from the optimal operating point owing to parameters drift, environmental disturbances, etc. Thus, it is necessary to develop efficacious strategies or procedure to assess the process performance online. In this paper, we explore the issue of operating optimality assessment for complex industrial processes based on performance-similarity considering nonlinearities and outliers simultaneously, and a general enforced online performance assessment framework is proposed. In the offline part, a new and modified total robust kernel projection to latent structures algorithm,T-KPRM, is proposed and used to evaluate the complex nonlinear industrial process, which can effectively extract the optimal-index-related process variation information from process data and establish assessment models for each performance grades overcoming the effects of outlier. In the online part, the online assessment results can be obtained by calculating the similarity between the online data from a sliding window and each of the performance grades. Furthermore, in order to improve the accuracy of online assessment, we propose an online assessment strategy taking account of the effects of noise and process uncertainties. The Euclidean distance between the sliding data window and the optimal evaluation level is employed to measure the contribution rates of variables, which indicate the possible reason for the non-optimal operating performance. The proposed framework is tested on a real industrial case: dense medium coal preparation process, and the results shows the efficiency of the proposed method comparing to the existing method.展开更多
Recently, the robustness of contextuality(RoC) of an empirical model was discussed in [Sci. China-Phys. Mech. Astron. 59,640303(2016)], many important properties of the RoC have been proved except for its boundedness ...Recently, the robustness of contextuality(RoC) of an empirical model was discussed in [Sci. China-Phys. Mech. Astron. 59,640303(2016)], many important properties of the RoC have been proved except for its boundedness and continuity. The aim of this paper is to find an upper bound for the RoC over all of empirical models and prove that the RoC is a continuous function on the set of all empirical models. Lastly, a relationship between the RoC and the extent of violating the noncontextual inequalities is established for an n-cycle contextual box. This relationship implies that the RoC can be used to quantify the contextuality of n-cycle boxes.展开更多
Three indexes including forest pest occurrence area,control area and input fund of 31 provinces from 2003 to 2014 were selected from Forestry Statistical Yearbook,to establish dynamic interaction index evaluation syst...Three indexes including forest pest occurrence area,control area and input fund of 31 provinces from 2003 to 2014 were selected from Forestry Statistical Yearbook,to establish dynamic interaction index evaluation system with clustering robust regression model and Stata 13. 0 software. Total forest pest control efficiency in China was determined according to the computing result of entropy method. Suggestions such as improving forest pest control efficiency,increasing service efficiency and input amount of forest pest control input funds were put forward. It will provide empirical basis for target management evaluation of forest pest control work and accountability system.展开更多
In this paper, we introduce and discuss the robustness of contextuality(Ro C) R_C(e) and the contextuality cost C(e) of an empirical model e. The following properties of them are proved.(i) An empirical model ...In this paper, we introduce and discuss the robustness of contextuality(Ro C) R_C(e) and the contextuality cost C(e) of an empirical model e. The following properties of them are proved.(i) An empirical model e is contextual if and only if R_C(e) &gt; 0;(ii) the Ro C function R_C is convex, lower semi-continuous and un-increasing under an affine mapping on the set E M of all empirical models;(iii) e is non-contextual if and only if C(e) = 0;(iv) e is contextual if and only if C(e) &gt; 0;(v) e is strongly contextual if and only if C(e) = 1. Also, a relationship between RC(e) and C(e) is obtained. Lastly, the Ro C of three empirical models is computed and compared. Especially, the Ro C of the PR boxes is obtained and the supremum 0.5 is found for the Ro C of all no-signaling type(2, 2, 2) empirical models.展开更多
For the 2-Degree of Freedom(DOF)lower limb exoskeleton,to ensure the system robustness and dynamic performance,a linearextended-state-observer-based(LESO)robust sliding mode control is proposed to not only reduce the ...For the 2-Degree of Freedom(DOF)lower limb exoskeleton,to ensure the system robustness and dynamic performance,a linearextended-state-observer-based(LESO)robust sliding mode control is proposed to not only reduce the influence of parametric uncertainties,unmodeled dynamics,and external disturbance but also estimate the unmeasurable real-time joint angular velocity directly.Then,via Lyapunov technology,the stability of the corresponding LESO and controller is proven.The appropriate and reasonable simulation was carried out to verify the effectiveness of the proposed LESO and exoskeleton controller.展开更多
We are concerned with robust estimation procedures to estimate the parameters in partially linear models with large-dimensional covariates. To enhance the interpretability, we suggest implementing a noncon- cave regul...We are concerned with robust estimation procedures to estimate the parameters in partially linear models with large-dimensional covariates. To enhance the interpretability, we suggest implementing a noncon- cave regularization method in the robust estimation procedure to select important covariates from the linear component. We establish the consistency for both the linear and the nonlinear components when the covariate dimension diverges at the rate of o(√n), where n is the sample size. We show that the robust estimate of linear component performs asymptotically as well as its oracle counterpart which assumes the baseline function and the unimportant covariates were known a priori. With a consistent estimator of the linear component, we estimate the nonparametric component by a robust local linear regression. It is proved that the robust estimate of nonlinear component performs asymptotically as well as if the linear component were known in advance. Comprehensive simulation studies are carried out and an application is presented to examine the finite-sample performance of the proposed procedures.展开更多
Application of model predictive control(MPC)in horticultural practice requires detailed models.However,even highly sophisticated greenhouse climate models are often known to have unknown dynamics affected by bounded u...Application of model predictive control(MPC)in horticultural practice requires detailed models.However,even highly sophisticated greenhouse climate models are often known to have unknown dynamics affected by bounded uncertainties.To enforce robustness during the controller design stage,this paper proposes a particle swarm optimization(PSO)-based robust MPC strategy for greenhouse temperature systems.The strategy is based on a nonlinear physical temperature affine model.The robust MPC technique requires online solution of a minimax optimal control problem,which optimizes the tradeoff between set point tracking and cost requirements reduction.The minimax optimization problem is reformulated to a nonlinear programming problem with constraints.PSO is used to solve the reformulated problem and priority ranking of constraint fitness is proposed to guarantee that the constraints are satisfied.The results of simulations performed using the proposed control system show that the controller can effectively achieve the set point in the presence of disturbances and that it offers more suitable control variables,higher control precision,and stronger robustness than the conventional MPC.展开更多
Block principle and pattern classification component analysis (BPCA) is a recently developed technique in computer vision In this paper, we propose a robust and sparse BPCA with Lp-norm, referred to as BPCALp-S, whi...Block principle and pattern classification component analysis (BPCA) is a recently developed technique in computer vision In this paper, we propose a robust and sparse BPCA with Lp-norm, referred to as BPCALp-S, which inherits the robustness of BPCA-L1 due to the employment of adjustable Lp-norm. In order to perform a sparse modelling, the elastic net is integrated into the objective function. An iterative algorithm which extracts feature vectors one by one greedily is elaborately designed. The monotonicity of the proposed iterative procedure is theoretically guaranteed. Experiments of image classification and reconstruction on several benchmark sets show the effectiveness of the proposed approach.展开更多
基金Project(61673199)supported by the National Natural Science Foundation of ChinaProject(ICT1800400)supported by the Open Research Project of the State Key Laboratory of Industrial Control Technology,Zhejiang University,China
文摘For a class of linear discrete-time systems that is subject to randomly occurred networked packet loss in industrial cyber physical systems, a novel robust model predictive control method with active compensation mechanism was proposed. The probability distribution of packet loss is described as the Bernoulli distributed white sequences. By using the Lyapunov stability theory, the existing sufficient conditions of the controller are derived from solving a group of linear matrix inequalities. Moreover, dropout-rate with uncertainty and unknown dropout-rate are also considered, which can greatly reduce the conservativeness of the controller. The designed robust model predictive control method not only efficiently eliminates the negative effects of the networked data loss in industrial cyber physical systems but also ensures the stability of closed-loop system. Two examples were provided to illustrate the superiority and effectiveness of the proposed method.
基金supported by the National Natural Science Foundation of China(Grant Nos.51978517,52090082,and 52108381)Innovation Program of Shanghai Municipal Education Commission(Grant No.2019-01-07-00-07-456 E00051)Shanghai Science and Technology Committee Program(Grant Nos.21DZ1200601 and 20DZ1201404).
文摘The influence of a deep excavation on existing shield tunnels nearby is a vital issue in tunnelling engineering.Whereas,there lacks robust methods to predict excavation-induced tunnel displacements.In this study,an auto machine learning(AutoML)-based approach is proposed to precisely solve the issue.Seven input parameters are considered in the database covering two physical aspects,namely soil property,and spatial characteristics of the deep excavation.The 10-fold cross-validation method is employed to overcome the scarcity of data,and promote model’s robustness.Six genetic algorithm(GA)-ML models are established as well for comparison.The results indicated that the proposed AutoML model is a comprehensive model that integrates efficiency and robustness.Importance analysis reveals that the ratio of the average shear strength to the vertical effective stress E_(ur)/σ′_(v),the excavation depth H,and the excavation width B are the most influential variables for the displacements.Finally,the AutoML model is further validated by practical engineering.The prediction results are in a good agreement with monitoring data,signifying that our model can be applied in real projects.
基金supported by the National Key Research and Development Project of China(2018YFE0122200).
文摘Effective source-load prediction and reasonable dispatching are crucial to realize the economic and reliable operations of integrated energy systems(IESs).They can overcome the challenges introduced by the uncertainties of new energies and various types of loads in the IES.Accordingly,a robust optimal dispatching method for the IES based on a robust economic model predictive control(REMPC)strategy considering source-load power interval prediction is proposed.First,an operation model of the IES is established,and an interval prediction model based on the bidirectional long short-term memory network optimized by beetle antenna search and bootstrap is formulated and applied to predict the photovoltaic power and the cooling,heating,and electrical loads.Then,an optimal dispatching scheme based on REMPC is devised for the IES.The source-load interval prediction results are used to improve the robustness of the REPMC and reduce the influence of source-load uncertainties on dispatching.An actual IES case is selected to conduct simulations;the results show that compared with other prediction techniques,the proposed method has higher prediction interval coverage probability and prediction interval normalized averaged width.Moreover,the operational cost of the IES is decreased by the REMPC strategy.With the devised dispatching scheme,the ability of the IES to handle the dispatching risk caused by prediction errors is enhanced.Improved dispatching robustness and operational economy are also achieved.
文摘The thermal induced errors can account for as much as 70% of the dimensional errors on a workpiece. Accurate modeling of errors is an essential part of error compensation. Base on analyzing the existing approaches of the thermal error modeling for machine tools, a new approach of regression orthogonal design is proposed, which combines the statistic theory with machine structures, surrounding condition, engineering judgements, and experience in modeling. A whole computation and analysis procedure is given. Therefore, the model got from this method are more robust and practical than those got from the present method that depends on the modeling data completely. At last more than 100 applications of CNC turning center with only one thermal error model are given. The cutting diameter variation reduces from more than 35 μm to about 12 μm with the orthogonal regression modeling and compensation of thermal error.
基金supported by the Special Research Project on Power Planning of the Guangdong Power Grid Co.,Ltd.
文摘To accommodate wind power as safely as possible and deal with the uncertainties of the output power of winddriven generators,a min-max-min two-stage robust optimization model is presented,considering the unit commitment,source-network load collaboration,and control of the load demand response.After the constraint functions are linearized,the original problem is decomposed into the main problem and subproblem as a matrix using the strong dual method.The minimum-maximum of the original problem was continuously maximized using the iterative method,and the optimal solution was finally obtained.The constraint conditions expressed by the matrix may reduce the calculation time,and the upper and lower boundaries of the original problem may rapidly converge.The results of the example show that the injected nodes of the wind farms in the power grid should be selected appropriately;otherwise,it is easy to cause excessive accommodation of wind power at some nodes,leading to a surge in reserve costs and the load demand response is continuously optimized to reduce the inverse peak regulation characteristics of wind power.Thus,the most economical optimization scheme for the worst scenario of the output power of the generators is obtained,which proves the economy and reliability of the two-stage robust optimization method.
基金supported by National Natural Science Foundation of China (No. 60934007, No. 61074060)China Postdoctoral Science Foundation (No. 20090460627)+1 种基金Shanghai Postdoctoral Scientific Program (No. 10R21414600)China Postdoctoral Science Foundation Special Support (No. 201003272)
文摘In this paper, a robust model predictive control approach is proposed for a class of uncertain systems with time-varying, linear fractional transformation perturbations. By adopting a sequence of feedback control laws instead of a single one, the control performance can be improved and the region of attraction can be enlarged compared with the existing model predictive control (MPC) approaches. Moreover, a synthesis approach of MPC is developed to achieve high performance with lower on-line computational burden. The effectiveness of the proposed approach is verified by simulation examples.
基金Supported by National Natural Science Foundation of China(Grant No.51375009)PhD Research Foundation of Liaocheng University,China(Grant No.318051523)Tsinghua University Initiative Scientific Research Program,China
文摘Because of vehicle's external disturbances and model uncertainties,robust control algorithms have obtained popularity in vehicle stability control.The robust control usually gives up performance in order to guarantee the robustness of the control algorithm,therefore an improved robust internal model control(IMC) algorithm blending model tracking and internal model control is put forward for active steering system in order to reach high performance of yaw rate tracking with certain robustness.The proposed algorithm inherits the good model tracking ability of the IMC control and guarantees robustness to model uncertainties.In order to separate the design process of model tracking from the robustness design process,the improved 2 degree of freedom(DOF) robust internal model controller structure is given from the standard Youla parameterization.Simulations of double lane change maneuver and those of crosswind disturbances are conducted for evaluating the robust control algorithm,on the basis of a nonlinear vehicle simulation model with a magic tyre model.Results show that the established 2-DOF robust IMC method has better model tracking ability and a guaranteed level of robustness and robust performance,which can enhance the vehicle stability and handling,regardless of variations of the vehicle model parameters and the external crosswind interferences.Contradiction between performance and robustness of active steering control algorithm is solved and higher control performance with certain robustness to model uncertainties is obtained.
基金Supported by National Natural Science Foundation of China(Grant Nos.11072106,51375009)
文摘Because of the tire nonlinearity and vehicle's parameters'uncertainties,robust control methods based on the worst cases,such as H_∞,μsynthesis,have been widely used in active front steering control,however,in order to guarantee the stability of active front steering system(AFS)controller,the robust control is at the cost of performance so that the robust controller is a little conservative and has low performance for AFS control.In this paper,a generalized internal model robust control(GIMC)that can overcome the contradiction between performance and stability is used in the AFS control.In GIMC,the Youla parameterization is used in an improved way.And GIMC controller includes two sections:a high performance controller designed for the nominal vehicle model and a robust controller compensating the vehicle parameters'uncertainties and some external disturbances.Simulations of double lane change(DLC)maneuver and that of braking on split-μroad are conducted to compare the performance and stability of the GIMC control,the nominal performance PID controller and the H_∞controller.Simulation results show that the high nominal performance PID controller will be unstable under some extreme situations because of large vehicle's parameters variations,H_∞controller is conservative so that the performance is a little low,and only the GIMC controller overcomes the contradiction between performance and robustness,which can both ensure the stability of the AFS controller and guarantee the high performance of the AFS controller.Therefore,the GIMC method proposed for AFS can overcome some disadvantages of control methods used by current AFS system,that is,can solve the instability of PID or LQP control methods and the low performance of the standard H_∞controller.
文摘Due to unforeseen climate change,complicated chronic diseases,and mutation of viruses’hospital administration’s top challenge is to know about the Length of stay(LOS)of different diseased patients in the hospitals.Hospital management does not exactly know when the existing patient leaves the hospital;this information could be crucial for hospital management.It could allow them to take more patients for admission.As a result,hospitals face many problems managing available resources and new patients in getting entries for their prompt treatment.Therefore,a robust model needs to be designed to help hospital administration predict patients’LOS to resolve these issues.For this purpose,a very large-sized data(more than 2.3 million patients’data)related to New-York Hospitals patients and containing information about a wide range of diseases including Bone-Marrow,Tuberculosis,Intestinal Transplant,Mental illness,Leukaemia,Spinal cord injury,Trauma,Rehabilitation,Kidney and Alcoholic Patients,HIV Patients,Malignant Breast disorder,Asthma,Respiratory distress syndrome,etc.have been analyzed to predict the LOS.We selected six Machine learning(ML)models named:Multiple linear regression(MLR),Lasso regression(LR),Ridge regression(RR),Decision tree regression(DTR),Extreme gradient boosting regression(XGBR),and Random Forest regression(RFR).The selected models’predictive performance was checked using R square andMean square error(MSE)as the performance evaluation criteria.Our results revealed the superior predictive performance of the RFRmodel,both in terms of RS score(92%)and MSE score(5),among all selected models.By Exploratory data analysis(EDA),we conclude that maximumstay was between 0 to 5 days with the meantime of each patient 5.3 days and more than 50 years old patients spent more days in the hospital.Based on the average LOS,results revealed that the patients with diagnoses related to birth complications spent more days in the hospital than other diseases.This finding could help predict the future length of hospital stay of new patients,which will help the hospital administration estimate and manage their resources efficiently.
文摘In this paper, we propose a robust mixture regression model based on the skew scale mixtures of normal distributions (RMR-SSMN) which can accommodate asymmetric, heavy-tailed and contaminated data better. For the variable selection problem, the penalized likelihood approach with a new combined penalty function which balances the SCAD and l<sub>2</sub> penalty is proposed. The adjusted EM algorithm is presented to get parameter estimates of RMR-SSMN models at a faster convergence rate. As simulations show, our mixture models are more robust than general FMR models and the new combined penalty function outperforms SCAD for variable selection. Finally, the proposed methodology and algorithm are applied to a real data set and achieve reasonable results.
基金Supported by Student Innovation and Entrepreneurship Training Program Project of Hebei Agricultural University(2020102).
文摘In view of the uncertainty in the location selection of logistics distribution center for the fresh agricultural products,the present study established a robust model based on the maximization of principal component score taking budget cost parameters as an example.In the process of model solving,the interval form of the uncertain set was used to clarify the constraint conditions,to transform into a certain 0-1 integer linear programming model,so as to solve with the aid of LINGO software.Finally,through studying the location selection of logistics distribution center for fresh agricultural products in the Beijing-Tianjin-Hebei region,it analyzed the application of the robust model and tested the validity of the model.
基金supported by National Natural Science Foundation of China(No.62075011)Graduate Technological Innovation Project of Beijing Institute of Technology(No.2019CX20026)。
文摘As traditional Chinese medicines,Fritillaria from different origins are very similar and it is difficult to distinguish them.In this study,the laser-induced breakdown spectroscopy combined with learning vector quantization(LIBS-LVQ)was proposed to distinguish the powdered samples of Fritillaria cirrhosa and non-Fritillaria cirrhosa.We also studied the performance of linear discriminant analysis,and support vector machine on the same data set.Among these three classifiers,LVQ had the highest correct classification rate of 99.17%.The experimental results demonstrated that the LIBS-LVQ model could be used to differentiate the powdered samples of Fritillaria cirrhosa and non-Fritillaria cirrhosa.
基金Supported by the National Natural Science Foundation of China(61503384,61603393)Natural Science Foundation of Jiangsu(BK20150199,BK20160275)+1 种基金the Foundation Research Funds for the Central Universities(2015QNA65)the Postdoctoral Foundation of Jiangsu Province(1501081B)
文摘Although industrial processes often perform perfectly under design conditions, they may deviate from the optimal operating point owing to parameters drift, environmental disturbances, etc. Thus, it is necessary to develop efficacious strategies or procedure to assess the process performance online. In this paper, we explore the issue of operating optimality assessment for complex industrial processes based on performance-similarity considering nonlinearities and outliers simultaneously, and a general enforced online performance assessment framework is proposed. In the offline part, a new and modified total robust kernel projection to latent structures algorithm,T-KPRM, is proposed and used to evaluate the complex nonlinear industrial process, which can effectively extract the optimal-index-related process variation information from process data and establish assessment models for each performance grades overcoming the effects of outlier. In the online part, the online assessment results can be obtained by calculating the similarity between the online data from a sliding window and each of the performance grades. Furthermore, in order to improve the accuracy of online assessment, we propose an online assessment strategy taking account of the effects of noise and process uncertainties. The Euclidean distance between the sliding data window and the optimal evaluation level is employed to measure the contribution rates of variables, which indicate the possible reason for the non-optimal operating performance. The proposed framework is tested on a real industrial case: dense medium coal preparation process, and the results shows the efficiency of the proposed method comparing to the existing method.
基金supported by the National Natural Science Foundation of China(Grant Nos.11371012,11401359,11471200,11571211 and11571213)the Fundamental Research Funds for the Central Universities(Grant No.GK201604001)the Innovation Fund Project for Graduate Program of Shaanxi Normal University(Grant No.2016CBY005)
文摘Recently, the robustness of contextuality(RoC) of an empirical model was discussed in [Sci. China-Phys. Mech. Astron. 59,640303(2016)], many important properties of the RoC have been proved except for its boundedness and continuity. The aim of this paper is to find an upper bound for the RoC over all of empirical models and prove that the RoC is a continuous function on the set of all empirical models. Lastly, a relationship between the RoC and the extent of violating the noncontextual inequalities is established for an n-cycle contextual box. This relationship implies that the RoC can be used to quantify the contextuality of n-cycle boxes.
基金Supported by Analysis of Forest Pest Cost Responsibility Investigation System(2017-R04)Protection and Development:Coordination Mechanism Research from the Perspective of Community(71373024)
文摘Three indexes including forest pest occurrence area,control area and input fund of 31 provinces from 2003 to 2014 were selected from Forestry Statistical Yearbook,to establish dynamic interaction index evaluation system with clustering robust regression model and Stata 13. 0 software. Total forest pest control efficiency in China was determined according to the computing result of entropy method. Suggestions such as improving forest pest control efficiency,increasing service efficiency and input amount of forest pest control input funds were put forward. It will provide empirical basis for target management evaluation of forest pest control work and accountability system.
基金supported by the National Natural Science Foundation of China(Grant Nos.1137101211401359+1 种基金11471200 and 11571213)the Fundamental Research Funds for the Central Universities(Grant No.GK201301007)
文摘In this paper, we introduce and discuss the robustness of contextuality(Ro C) R_C(e) and the contextuality cost C(e) of an empirical model e. The following properties of them are proved.(i) An empirical model e is contextual if and only if R_C(e) &gt; 0;(ii) the Ro C function R_C is convex, lower semi-continuous and un-increasing under an affine mapping on the set E M of all empirical models;(iii) e is non-contextual if and only if C(e) = 0;(iv) e is contextual if and only if C(e) &gt; 0;(v) e is strongly contextual if and only if C(e) = 1. Also, a relationship between RC(e) and C(e) is obtained. Lastly, the Ro C of three empirical models is computed and compared. Especially, the Ro C of the PR boxes is obtained and the supremum 0.5 is found for the Ro C of all no-signaling type(2, 2, 2) empirical models.
基金This work was supported by National Natural Science Foundation of China(No.51775089 and 11872147)Sichuan Science and Technology Program(No.2018JY0565 and 2020YFG0137).
文摘For the 2-Degree of Freedom(DOF)lower limb exoskeleton,to ensure the system robustness and dynamic performance,a linearextended-state-observer-based(LESO)robust sliding mode control is proposed to not only reduce the influence of parametric uncertainties,unmodeled dynamics,and external disturbance but also estimate the unmeasurable real-time joint angular velocity directly.Then,via Lyapunov technology,the stability of the corresponding LESO and controller is proven.The appropriate and reasonable simulation was carried out to verify the effectiveness of the proposed LESO and exoskeleton controller.
基金supported by National Institute on Drug Abuse(Grant Nos.R21-DA024260 and P50-DA10075)National Natural Science Foundation of China(Grant Nos.11071077,11371236,11028103,11071022 and 11028103)+2 种基金Innovation Program of Shanghai Municipal Education CommissionPujiang Project of Science and Technology Commission of Shanghai Municipality(Grant No.12PJ1403200)Program for New Century Excellent Talents,Ministry of Education of China(Grant No.NCET-12-0901)
文摘We are concerned with robust estimation procedures to estimate the parameters in partially linear models with large-dimensional covariates. To enhance the interpretability, we suggest implementing a noncon- cave regularization method in the robust estimation procedure to select important covariates from the linear component. We establish the consistency for both the linear and the nonlinear components when the covariate dimension diverges at the rate of o(√n), where n is the sample size. We show that the robust estimate of linear component performs asymptotically as well as its oracle counterpart which assumes the baseline function and the unimportant covariates were known a priori. With a consistent estimator of the linear component, we estimate the nonparametric component by a robust local linear regression. It is proved that the robust estimate of nonlinear component performs asymptotically as well as if the linear component were known in advance. Comprehensive simulation studies are carried out and an application is presented to examine the finite-sample performance of the proposed procedures.
基金supported by the National Natural Science Foundation of China(grant numbers 61174088,60374030).
文摘Application of model predictive control(MPC)in horticultural practice requires detailed models.However,even highly sophisticated greenhouse climate models are often known to have unknown dynamics affected by bounded uncertainties.To enforce robustness during the controller design stage,this paper proposes a particle swarm optimization(PSO)-based robust MPC strategy for greenhouse temperature systems.The strategy is based on a nonlinear physical temperature affine model.The robust MPC technique requires online solution of a minimax optimal control problem,which optimizes the tradeoff between set point tracking and cost requirements reduction.The minimax optimization problem is reformulated to a nonlinear programming problem with constraints.PSO is used to solve the reformulated problem and priority ranking of constraint fitness is proposed to guarantee that the constraints are satisfied.The results of simulations performed using the proposed control system show that the controller can effectively achieve the set point in the presence of disturbances and that it offers more suitable control variables,higher control precision,and stronger robustness than the conventional MPC.
基金the National Natural Science Foundation of China(No.61572033)the Natural Science Foundation of Education Department of Anhui Province of China(No.KJ2015ZD08)the Higher Education Promotion Plan of Anhui Province of China(No.TSKJ2015B14)
文摘Block principle and pattern classification component analysis (BPCA) is a recently developed technique in computer vision In this paper, we propose a robust and sparse BPCA with Lp-norm, referred to as BPCALp-S, which inherits the robustness of BPCA-L1 due to the employment of adjustable Lp-norm. In order to perform a sparse modelling, the elastic net is integrated into the objective function. An iterative algorithm which extracts feature vectors one by one greedily is elaborately designed. The monotonicity of the proposed iterative procedure is theoretically guaranteed. Experiments of image classification and reconstruction on several benchmark sets show the effectiveness of the proposed approach.