An NT-MT combined method based on nodal test (NT) and measurement test (MT) is developed for gross error detection and data reconciliation for industrial application. The NT-MT combined method makes use of both NT and...An NT-MT combined method based on nodal test (NT) and measurement test (MT) is developed for gross error detection and data reconciliation for industrial application. The NT-MT combined method makes use of both NT and MT tests and this combination helps to overcome the defects in the respective methods. It also avoids any artificial manipulation and eliminates the huge combinatorial problem that is created in the combined method based on the nodal test in the case of more than one gross error for a large process system. Serial compensation strategy is also used to avoid the decrease of the coefficient matrix rank during the computation of the proposed method. Simulation results show that the proposed method is very effective and possesses good performance.展开更多
A novel mixed integer linear programming (NMILP) model for detection of gross errors is presented in this paper. Yamamura et al.(1988) designed a model for detection of gross errors and data reconciliation based on Ak...A novel mixed integer linear programming (NMILP) model for detection of gross errors is presented in this paper. Yamamura et al.(1988) designed a model for detection of gross errors and data reconciliation based on Akaike information cri- terion (AIC). But much computational cost is needed due to its combinational nature. A mixed integer linear programming (MILP) approach was performed to reduce the computational cost and enhance the robustness. But it loses the super performance of maximum likelihood estimation. To reduce the computational cost and have the merit of maximum likelihood estimation, the simultaneous data reconciliation method in an MILP framework is decomposed and replaced by an NMILP subproblem and a quadratic programming (QP) or a least squares estimation (LSE) subproblem. Simulation result of an industrial case shows the high efficiency of the method.展开更多
Data reconciliation technology can decrease the level of corruption of process data due to measurement noise, but the presence of outliers caused by process peaks or unmeasured disturbances will smear the reconciled r...Data reconciliation technology can decrease the level of corruption of process data due to measurement noise, but the presence of outliers caused by process peaks or unmeasured disturbances will smear the reconciled results. Based on the analysis of limitation of conventional outlier detection algorithms, a modified outlier detection method in dynamic data reconciliation (DDR) is proposed in this paper. In the modified method, the outliers of each variable are distinguished individually and the weight is modified accordingly. Therefore, the modified method can use more information of normal data, and can efficiently decrease the effect of outliers. Simulation of a continuous stirred tank reactor (CSTR) process verifies the effectiveness of the proposed algorithm.展开更多
The detection and identification of gross errors, especially measurement bias, plays a vital role in data reconciliation for nonlinear dynamic systems. Although parameter estimation method has been proved to be a pow-...The detection and identification of gross errors, especially measurement bias, plays a vital role in data reconciliation for nonlinear dynamic systems. Although parameter estimation method has been proved to be a pow-erful tool for bias identification, without a reliable and efficient bias detection strategy, the method is limited in ef-ficiency and cannot be applied widely. In this paper, a new bias detection strategy is constructed to detect the pres-ence of measurement bias and its occurrence time. With the help of this strategy, the number of parameters to be es-timated is greatly reduced, and sequential detections and iterations are also avoided. In addition, the number of de-cision variables of the optimization model is reduced, through which the influence of the parameters estimated is reduced. By incorporating the strategy into the parameter estimation model, a new methodology named IPEBD (Improved Parameter Estimation method with Bias Detection strategy) is constructed. Simulation studies on a con-tinuous stirred tank reactor (CSTR) and the Tennessee Eastman (TE) problem show that IPEBD is efficient for eliminating random errors, measurement biases and outliers contained in dynamic process data.展开更多
基金Supported by the National Creative Research Groups Science Foundation of China (No.60421002) and the National "TenthFive-Year" Science and Technology Research Program of China (2004BA204B08).
文摘An NT-MT combined method based on nodal test (NT) and measurement test (MT) is developed for gross error detection and data reconciliation for industrial application. The NT-MT combined method makes use of both NT and MT tests and this combination helps to overcome the defects in the respective methods. It also avoids any artificial manipulation and eliminates the huge combinatorial problem that is created in the combined method based on the nodal test in the case of more than one gross error for a large process system. Serial compensation strategy is also used to avoid the decrease of the coefficient matrix rank during the computation of the proposed method. Simulation results show that the proposed method is very effective and possesses good performance.
基金Supported by National High Technology Research and Development Program of China (863 Program) (2006AA040308), National Natural Science Foundation of China (60736021), and the National Creative Research Groups Science Foundation of China (60721062)
基金Project supported by the National Creative Research Groups Science Foundation of China (No. 60421002)the National "Tenth Five-Year" Science and Technology Research Program of China (No.2004BA204B08)
文摘A novel mixed integer linear programming (NMILP) model for detection of gross errors is presented in this paper. Yamamura et al.(1988) designed a model for detection of gross errors and data reconciliation based on Akaike information cri- terion (AIC). But much computational cost is needed due to its combinational nature. A mixed integer linear programming (MILP) approach was performed to reduce the computational cost and enhance the robustness. But it loses the super performance of maximum likelihood estimation. To reduce the computational cost and have the merit of maximum likelihood estimation, the simultaneous data reconciliation method in an MILP framework is decomposed and replaced by an NMILP subproblem and a quadratic programming (QP) or a least squares estimation (LSE) subproblem. Simulation result of an industrial case shows the high efficiency of the method.
基金Supported by the National Outstanding Youth Science Foundation of China (No. 60025308) and Key Technologies R&DProgram in the 10th Five-year Plan (No. 2001BA204B07)
文摘Data reconciliation technology can decrease the level of corruption of process data due to measurement noise, but the presence of outliers caused by process peaks or unmeasured disturbances will smear the reconciled results. Based on the analysis of limitation of conventional outlier detection algorithms, a modified outlier detection method in dynamic data reconciliation (DDR) is proposed in this paper. In the modified method, the outliers of each variable are distinguished individually and the weight is modified accordingly. Therefore, the modified method can use more information of normal data, and can efficiently decrease the effect of outliers. Simulation of a continuous stirred tank reactor (CSTR) process verifies the effectiveness of the proposed algorithm.
基金Supported by the National High Technology Research and Development Program of China (2006AA04Z176)
文摘The detection and identification of gross errors, especially measurement bias, plays a vital role in data reconciliation for nonlinear dynamic systems. Although parameter estimation method has been proved to be a pow-erful tool for bias identification, without a reliable and efficient bias detection strategy, the method is limited in ef-ficiency and cannot be applied widely. In this paper, a new bias detection strategy is constructed to detect the pres-ence of measurement bias and its occurrence time. With the help of this strategy, the number of parameters to be es-timated is greatly reduced, and sequential detections and iterations are also avoided. In addition, the number of de-cision variables of the optimization model is reduced, through which the influence of the parameters estimated is reduced. By incorporating the strategy into the parameter estimation model, a new methodology named IPEBD (Improved Parameter Estimation method with Bias Detection strategy) is constructed. Simulation studies on a con-tinuous stirred tank reactor (CSTR) and the Tennessee Eastman (TE) problem show that IPEBD is efficient for eliminating random errors, measurement biases and outliers contained in dynamic process data.