The development of laser sampling for optical emission spectrometry is reviewed . Advantages and limitations of pulsed laser sampling are compared with those of continuous laser sampling . A novel method of laser samp...The development of laser sampling for optical emission spectrometry is reviewed . Advantages and limitations of pulsed laser sampling are compared with those of continuous laser sampling . A novel method of laser sampling of liquid samples for inductively coupled plasma -atomic emission spectrometry has been proposed , and its analytical performance investigated.Experimental results showed that,as a method of sample introduction , laser vaporization of liquid samples enjoyed certain advantages , e.g.,much higher sensitivity, much lower detection limit and reduced sample volume , over solution nebulization . A perspective of the application of laser sampling-inductively coupled plasma - actomic emission spectrometry for rock and mineral analysis is estimated as well.展开更多
The Jianpudong No. 4 tunnel is a shallow tunnel, which belongs to Shaoshan County scenic highway in Hunan province, China and whose surrounding rock is weak. According to its characteristics, the field monitoring test...The Jianpudong No. 4 tunnel is a shallow tunnel, which belongs to Shaoshan County scenic highway in Hunan province, China and whose surrounding rock is weak. According to its characteristics, the field monitoring tests and numerical analysis were done. The mechanical characteristics of shallow tunnels under weak surrounding rock and the stress-strain rule of surrounding rock and support were analyzed. The numerical analysis results show that the settlement caused by upper bench excavating accounts for 44% of the total settlement, and the settlement caused by tunnel upper bench supporting accounts for 56% of the total settlement. The maximum axial force of shotcrete lining is 177.2 k N, which locates in hance under the secondary lining. The maximum moment of shotcrete lining is 5.08 k N·m, which locates in the arch foot. The stress curve of steel arch has three obvious stages during the tunnel construction. The maximum axial force of steel arch is 297.4 k N, which locates in tunnel vault. The axial forces of steel arch are respectively 23.5 k N and-21.8 k N, which is influenced by eccentric compression of shallow tunnel and locates in hance. The results show that there is larger earth pressure in tunnel vault which is most unfavorable position of steel arch. Therefore, the advance support should be strengthened in tunnel vault during construction process.展开更多
Geomechanical data are never sufficient in quantity or adequately precise and accurate for design purposes in mining and civil engineering.The objective of this paper is to show the variability of rock properties at t...Geomechanical data are never sufficient in quantity or adequately precise and accurate for design purposes in mining and civil engineering.The objective of this paper is to show the variability of rock properties at the sampled point in the roadway's roof,and then,how the statistical processing of the available geomechanical data can affect the results of numerical modelling of the roadway's stability.Four cases were applied in the numerical analysis,using average values(the most common in geomechanical data analysis),average minus standard deviation,median,and average value minus statistical error.The study show that different approach to the same geomechanical data set can change the modelling results considerably.The case shows that average minus standard deviation is the most conservative and least risky.It gives the displacements and yielded elements zone in four times broader range comparing to the average values scenario,which is the least conservative option.The two other cases need to be studied further.The results obtained from them are placed between most favorable and most adverse values.Taking the average values corrected by statistical error for the numerical analysis seems to be the best solution.Moreover,the confidence level can be adjusted depending on the object importance and the assumed risk level.展开更多
Hydrated Cement Treated Crushed Rock Base (HCTCRB) is widely used as a base course in Western Australian pavements. HCTCRB has been designed and used as a basis for empirical approaches and in empirical practices. T...Hydrated Cement Treated Crushed Rock Base (HCTCRB) is widely used as a base course in Western Australian pavements. HCTCRB has been designed and used as a basis for empirical approaches and in empirical practices. These methods are not all-encompassing enough to adequately explain the behaviour of HCTCRB in the field. Recent developments in mechanistic approaches have proven more reliable in the design and analysis of pavement, making it possible to more effectively document the characteristics of HCTCRB. The aim of this study was to carry out laboratory testing to assess the mechanical characteristics of HCTCRB. Conventional triaxial tests and repeated load triaxial tests (RLT tests) were performed. Factors affecting the performance of HCTCRB, namely hydration periods and the amount of added water were also investigated. It was found that the shear strength parameters of HCTCRB were 177 kPa for cohesion (c) and 42~ for the internal friction angle (~). The hydration period, and the water added in this investigation affected the performance of HCTCRB. However, the related trends associated with such factors could not be assessed. All HCTCRB samples showed stress-dependency behaviour. Based on the stress stages of this experiment, the resilient modulus values of HCTCRB ranged from 300 MPa to 1100 MPa. CIRCLY, a computer program based on the multi-layer elastic theory was used in the mechanistic approach to pavement design and analysis, to determine the performance of a typical pavement model using HCTCRB as a base course layer. The mechanistic pavement design parameters for HCTCRB as a base course material were then introduced. The analysis suggests that the suitable depth for HCTCRB as a base layer for WA roads is at least 185 mm for the design equivalent standard axle (ESA) of 10 million.展开更多
Some rock joints exhibit significant brittleness,characterized by a sharp decrease in shear stress upon reaching the peak strength.However,existing models often fail to accurately represent this behavior and are encum...Some rock joints exhibit significant brittleness,characterized by a sharp decrease in shear stress upon reaching the peak strength.However,existing models often fail to accurately represent this behavior and are encumbered by numerous parameters lacking clear mechanical significance.This study presents a new statistical damage constitutive model rooted in both damage mechanics and statistics,containing only three model parameters.The proposed model encompasses all stages of joint shearing,including the compaction stage,linear stage,plastic yielding stage,drop stage,strain softening stage,and residual strength stage.To derive the analytical expression of the constitutive model,three boundary conditions are introduced.Experimental data from both natural and artificial rock joints is utilized to validate the model,resulting in average absolute relative errors ranging from 3%to 8%.Moreover,a comparative analysis with established models illustrates that the proposed model captures stress drop and post-peak strain softening more effectively,with model parameters possessing clearer mechanical interpretations.Furthermore,parameter analysis is conducted to investigate the impacts of model parameters on the curves and unveil the relationship between these parameters and the mechanical properties of rock joints.Importantly,the proposed model is straightforward in form,and all model parameters can be obtained from direct shear tests,thus facilitating the utilization in numerical simulations.展开更多
Tholeiitic basalts in various stages of alteration were dredged from Late Cretaceous volcanic rocks (60-67 Ma) in the Hebrides Terrace seamount area in the Atlantic Ocean. These rocks are extrusive olivine basalts, in...Tholeiitic basalts in various stages of alteration were dredged from Late Cretaceous volcanic rocks (60-67 Ma) in the Hebrides Terrace seamount area in the Atlantic Ocean. These rocks are extrusive olivine basalts, including high- and low-Al basalts. High-Al basalts are depleted in MgO, CaO, Cr, Sc, V, Sr, Zr and enriched in TiO-2, Na-2O, Nb, Rb as compared with low-Al basalts. Petrography and bulk-rock composition (major, trace and rare-earth elements) data defined clear tholeiitic suites displaying possible liquid lines of descent related to different degrees of crystal fractionation and partial melting. Isotopic dating of dredged samples gave the guyot an age of 60-67 Ma, in support of the assumption that it was formed during the Late Cretaceous.展开更多
20161631 Cao Lifeng(Henan Province Rock and Mineral Testing Center,Zhengzhou450012,China);Wang Minjie Determination of Cu,Pb,Zn,W and Mo in Deep-Penetrating Geochemical Samples of the Luanchuan Ore Concentrated Distri...20161631 Cao Lifeng(Henan Province Rock and Mineral Testing Center,Zhengzhou450012,China);Wang Minjie Determination of Cu,Pb,Zn,W and Mo in Deep-Penetrating Geochemical Samples of the Luanchuan Ore Concentrated District by ICP-MS with Extraction Elements of Mobile Forms(Rock and Mineral Analysis,ISSN0254-5357,CN11-2131/展开更多
Laser Absorption Spectroscopy technology is a convenient and rapid method for the simultaneous determination of hydrogen and oxygen isotope ratios in environmental water samples. This method has been widely used in th...Laser Absorption Spectroscopy technology is a convenient and rapid method for the simultaneous determination of hydrogen and oxygen isotope ratios in environmental water samples. This method has been widely used in the environment, geology, ecology, and energy fields due to its simplicity, high detection efficiency, and portability.展开更多
文摘The development of laser sampling for optical emission spectrometry is reviewed . Advantages and limitations of pulsed laser sampling are compared with those of continuous laser sampling . A novel method of laser sampling of liquid samples for inductively coupled plasma -atomic emission spectrometry has been proposed , and its analytical performance investigated.Experimental results showed that,as a method of sample introduction , laser vaporization of liquid samples enjoyed certain advantages , e.g.,much higher sensitivity, much lower detection limit and reduced sample volume , over solution nebulization . A perspective of the application of laser sampling-inductively coupled plasma - actomic emission spectrometry for rock and mineral analysis is estimated as well.
基金Projects(51408060,51208063)supported by the National Natural Science Foundation of China
文摘The Jianpudong No. 4 tunnel is a shallow tunnel, which belongs to Shaoshan County scenic highway in Hunan province, China and whose surrounding rock is weak. According to its characteristics, the field monitoring tests and numerical analysis were done. The mechanical characteristics of shallow tunnels under weak surrounding rock and the stress-strain rule of surrounding rock and support were analyzed. The numerical analysis results show that the settlement caused by upper bench excavating accounts for 44% of the total settlement, and the settlement caused by tunnel upper bench supporting accounts for 56% of the total settlement. The maximum axial force of shotcrete lining is 177.2 k N, which locates in hance under the secondary lining. The maximum moment of shotcrete lining is 5.08 k N·m, which locates in the arch foot. The stress curve of steel arch has three obvious stages during the tunnel construction. The maximum axial force of steel arch is 297.4 k N, which locates in tunnel vault. The axial forces of steel arch are respectively 23.5 k N and-21.8 k N, which is influenced by eccentric compression of shallow tunnel and locates in hance. The results show that there is larger earth pressure in tunnel vault which is most unfavorable position of steel arch. Therefore, the advance support should be strengthened in tunnel vault during construction process.
文摘Geomechanical data are never sufficient in quantity or adequately precise and accurate for design purposes in mining and civil engineering.The objective of this paper is to show the variability of rock properties at the sampled point in the roadway's roof,and then,how the statistical processing of the available geomechanical data can affect the results of numerical modelling of the roadway's stability.Four cases were applied in the numerical analysis,using average values(the most common in geomechanical data analysis),average minus standard deviation,median,and average value minus statistical error.The study show that different approach to the same geomechanical data set can change the modelling results considerably.The case shows that average minus standard deviation is the most conservative and least risky.It gives the displacements and yielded elements zone in four times broader range comparing to the average values scenario,which is the least conservative option.The two other cases need to be studied further.The results obtained from them are placed between most favorable and most adverse values.Taking the average values corrected by statistical error for the numerical analysis seems to be the best solution.Moreover,the confidence level can be adjusted depending on the object importance and the assumed risk level.
文摘Hydrated Cement Treated Crushed Rock Base (HCTCRB) is widely used as a base course in Western Australian pavements. HCTCRB has been designed and used as a basis for empirical approaches and in empirical practices. These methods are not all-encompassing enough to adequately explain the behaviour of HCTCRB in the field. Recent developments in mechanistic approaches have proven more reliable in the design and analysis of pavement, making it possible to more effectively document the characteristics of HCTCRB. The aim of this study was to carry out laboratory testing to assess the mechanical characteristics of HCTCRB. Conventional triaxial tests and repeated load triaxial tests (RLT tests) were performed. Factors affecting the performance of HCTCRB, namely hydration periods and the amount of added water were also investigated. It was found that the shear strength parameters of HCTCRB were 177 kPa for cohesion (c) and 42~ for the internal friction angle (~). The hydration period, and the water added in this investigation affected the performance of HCTCRB. However, the related trends associated with such factors could not be assessed. All HCTCRB samples showed stress-dependency behaviour. Based on the stress stages of this experiment, the resilient modulus values of HCTCRB ranged from 300 MPa to 1100 MPa. CIRCLY, a computer program based on the multi-layer elastic theory was used in the mechanistic approach to pavement design and analysis, to determine the performance of a typical pavement model using HCTCRB as a base course layer. The mechanistic pavement design parameters for HCTCRB as a base course material were then introduced. The analysis suggests that the suitable depth for HCTCRB as a base layer for WA roads is at least 185 mm for the design equivalent standard axle (ESA) of 10 million.
基金funded by the National Natural Science Foundation of China(No.41972266)Chongqing Natural Science Foundation(No.CSTB2024NSCQ-MSX0006).
文摘Some rock joints exhibit significant brittleness,characterized by a sharp decrease in shear stress upon reaching the peak strength.However,existing models often fail to accurately represent this behavior and are encumbered by numerous parameters lacking clear mechanical significance.This study presents a new statistical damage constitutive model rooted in both damage mechanics and statistics,containing only three model parameters.The proposed model encompasses all stages of joint shearing,including the compaction stage,linear stage,plastic yielding stage,drop stage,strain softening stage,and residual strength stage.To derive the analytical expression of the constitutive model,three boundary conditions are introduced.Experimental data from both natural and artificial rock joints is utilized to validate the model,resulting in average absolute relative errors ranging from 3%to 8%.Moreover,a comparative analysis with established models illustrates that the proposed model captures stress drop and post-peak strain softening more effectively,with model parameters possessing clearer mechanical interpretations.Furthermore,parameter analysis is conducted to investigate the impacts of model parameters on the curves and unveil the relationship between these parameters and the mechanical properties of rock joints.Importantly,the proposed model is straightforward in form,and all model parameters can be obtained from direct shear tests,thus facilitating the utilization in numerical simulations.
文摘Tholeiitic basalts in various stages of alteration were dredged from Late Cretaceous volcanic rocks (60-67 Ma) in the Hebrides Terrace seamount area in the Atlantic Ocean. These rocks are extrusive olivine basalts, including high- and low-Al basalts. High-Al basalts are depleted in MgO, CaO, Cr, Sc, V, Sr, Zr and enriched in TiO-2, Na-2O, Nb, Rb as compared with low-Al basalts. Petrography and bulk-rock composition (major, trace and rare-earth elements) data defined clear tholeiitic suites displaying possible liquid lines of descent related to different degrees of crystal fractionation and partial melting. Isotopic dating of dredged samples gave the guyot an age of 60-67 Ma, in support of the assumption that it was formed during the Late Cretaceous.
文摘20161631 Cao Lifeng(Henan Province Rock and Mineral Testing Center,Zhengzhou450012,China);Wang Minjie Determination of Cu,Pb,Zn,W and Mo in Deep-Penetrating Geochemical Samples of the Luanchuan Ore Concentrated District by ICP-MS with Extraction Elements of Mobile Forms(Rock and Mineral Analysis,ISSN0254-5357,CN11-2131/
文摘Laser Absorption Spectroscopy technology is a convenient and rapid method for the simultaneous determination of hydrogen and oxygen isotope ratios in environmental water samples. This method has been widely used in the environment, geology, ecology, and energy fields due to its simplicity, high detection efficiency, and portability.