Local geometric information and discontinuity features are key aspects of the analysis of the evolution and failure mechanisms of unstable rock blocks in rock tunnels.This study demonstrates the integration of terrest...Local geometric information and discontinuity features are key aspects of the analysis of the evolution and failure mechanisms of unstable rock blocks in rock tunnels.This study demonstrates the integration of terrestrial laser scanning(TLS)with distinct element method for rock mass characterization and stability analysis in tunnels.TLS records detailed geometric information of the surrounding rock mass by scanning and collecting the positions of millions of rock surface points without contact.By conducting a fuzzy K-means method,a discontinuity automatic identification algorithm was developed,and a method for obtaining the geometric parameters of discontinuities was proposed.This method permits the user to visually identify each discontinuity and acquire its spatial distribution features(e.g.occurrences,spac-ings,trace lengths)in great detail.Compared with hand mapping in conventional geotechnical surveys,the geometric information of discontinuities obtained by this approach is more accurate and the iden-tification is more efficient.Then,a discrete fracture network with the same statistical characteristics as the actual discontinuities was generated with the distinct element method,and a representative nu-merical model of the jointed surrounding rock mass was established.By means of numerical simulation,potential unstable rock blocks were assessed,and failure mechanisms were analyzed.This method was applied to detection and assessment of unstable rock blocks in the spillway and sand flushing tunnel of the Hongshiyan hydropower project after a collapse.The results show that the noncontact detection of blocks was more labor-saving with lower safety risks compared with manual surveys,and the stability assessment was more reliable since the numerical model built by this method was more consistent with the distribution characteristics of actual joints.This study can provide a reference for geological survey and unstable rock block hazard mitigation in tunnels subjected to complex geology and active rockfalls.展开更多
The objective of this research was to assess the characteristics of seismic induced damage and the deformation patterns of pre-stressed cement-grouted cables that are used for rock slope stabilization projects subject...The objective of this research was to assess the characteristics of seismic induced damage and the deformation patterns of pre-stressed cement-grouted cables that are used for rock slope stabilization projects subjected to quasi-static cyclic loading.The experimental configuration includes the installation of 15 pre-stressed cables in a slope model made of concrete blocks(theoretically rigid rock mass) on top of a pre-existing sliding surface.The study showed that:(i) The pre-stressed cables exhibited great seismic performance.Rapid displacement of the model blocks was observed after the complete loss of the initial pre-stress load under continued applied cyclic loads and exceedance of the state of equilibrium,which implies the higher the initial pre-stress load,the better the seismic performance of the rock anchor;(ii) The failure of the pre-stressed cables was due to fracture at the connection of the tendons and cable heads under cyclic loading.The sequence of failure had a distinct pattern.Failure was first observed at the upper row of cables,which experienced the most severe damage,including the ejection of cable heads.No evidence of de-bonding was observed during the cyclic loading;(iii) The stress distribution of the bond length for pre-stressed cables was highly non-uniform.High stress concentrations were observed at both the fixed end and the free end of the bond length both before and immediately after the state of equilibrium is exceeded.The results obtained can be used to evaluate the overall performance of pre-stressed rock anchors subject to seismic loading and their potential as rockfall prevention and stabilization measures.展开更多
基金support of the National Natural Science Foundation of China(Grant No.42102316)the Open Project of the Technology Innovation Center for Geological Environment Monitoring of Ministry of Natural Resources of China(Grant No.2022KFK1212005).
文摘Local geometric information and discontinuity features are key aspects of the analysis of the evolution and failure mechanisms of unstable rock blocks in rock tunnels.This study demonstrates the integration of terrestrial laser scanning(TLS)with distinct element method for rock mass characterization and stability analysis in tunnels.TLS records detailed geometric information of the surrounding rock mass by scanning and collecting the positions of millions of rock surface points without contact.By conducting a fuzzy K-means method,a discontinuity automatic identification algorithm was developed,and a method for obtaining the geometric parameters of discontinuities was proposed.This method permits the user to visually identify each discontinuity and acquire its spatial distribution features(e.g.occurrences,spac-ings,trace lengths)in great detail.Compared with hand mapping in conventional geotechnical surveys,the geometric information of discontinuities obtained by this approach is more accurate and the iden-tification is more efficient.Then,a discrete fracture network with the same statistical characteristics as the actual discontinuities was generated with the distinct element method,and a representative nu-merical model of the jointed surrounding rock mass was established.By means of numerical simulation,potential unstable rock blocks were assessed,and failure mechanisms were analyzed.This method was applied to detection and assessment of unstable rock blocks in the spillway and sand flushing tunnel of the Hongshiyan hydropower project after a collapse.The results show that the noncontact detection of blocks was more labor-saving with lower safety risks compared with manual surveys,and the stability assessment was more reliable since the numerical model built by this method was more consistent with the distribution characteristics of actual joints.This study can provide a reference for geological survey and unstable rock block hazard mitigation in tunnels subjected to complex geology and active rockfalls.
基金financially supported by the National Basic Research Program of China (973 Program) (Grant No.2013CB733202)the National Natural Science Foundation of China (Grant No.41102191)+1 种基金the State Key Laboratory of Geohazard Prevention and Geoenvironment Protection (Chengdu University of Technology) (Grant No.SKLGP2011Z019)the National Natural Science Foundation of China (Grant No.11670589)
文摘The objective of this research was to assess the characteristics of seismic induced damage and the deformation patterns of pre-stressed cement-grouted cables that are used for rock slope stabilization projects subjected to quasi-static cyclic loading.The experimental configuration includes the installation of 15 pre-stressed cables in a slope model made of concrete blocks(theoretically rigid rock mass) on top of a pre-existing sliding surface.The study showed that:(i) The pre-stressed cables exhibited great seismic performance.Rapid displacement of the model blocks was observed after the complete loss of the initial pre-stress load under continued applied cyclic loads and exceedance of the state of equilibrium,which implies the higher the initial pre-stress load,the better the seismic performance of the rock anchor;(ii) The failure of the pre-stressed cables was due to fracture at the connection of the tendons and cable heads under cyclic loading.The sequence of failure had a distinct pattern.Failure was first observed at the upper row of cables,which experienced the most severe damage,including the ejection of cable heads.No evidence of de-bonding was observed during the cyclic loading;(iii) The stress distribution of the bond length for pre-stressed cables was highly non-uniform.High stress concentrations were observed at both the fixed end and the free end of the bond length both before and immediately after the state of equilibrium is exceeded.The results obtained can be used to evaluate the overall performance of pre-stressed rock anchors subject to seismic loading and their potential as rockfall prevention and stabilization measures.