Blasting and breaking of hard roof are main inducing causes of rock bursts in coal mines with danger of rock burst,and it is important to find out the frequency spectrum distribution laws of these dynamic stress waves...Blasting and breaking of hard roof are main inducing causes of rock bursts in coal mines with danger of rock burst,and it is important to find out the frequency spectrum distribution laws of these dynamic stress waves and rock burst waves for researching the mechanism of rock burst.In this paper,Fourier transform as a micro-seismic signal conversion method of amplitude-time character to amplitude-frequency character is used to analyze the frequency spectrum characters of micro-seismic signal of blasting,hard roof breaking and rock bursts induced by the dynamic disturbance in order to find out the difference and relativity of different signals.The results indicate that blasting and breaking of hard roof are high frequency signals,and the peak values of dominant frequency of the signals are single.However,the results indicate that the rock bursts induced by the dynamic disturbance are low frequency signals,and there are two obvious peak values in the amplitude-frequency curve witch shows that the signals of rock bursts are superposition of low frequency signals and high frequency signals.The research conclusions prove that dynamic disturbance is necessary condition for rock bursts,and the conclusions provide a new way to research the mechanism of rock bursts.展开更多
To achieve the monitor of rock burst in coal mine with fiber Bragg grating (FBG) sensing, the coupling mechanism between FBG and shock waves w<span style="font-family:;" "="">as</span...To achieve the monitor of rock burst in coal mine with fiber Bragg grating (FBG) sensing, the coupling mechanism between FBG and shock waves w<span style="font-family:;" "="">as</span><span style="font-family:;" "=""> theoretically analyzed. Based on Housner’s random shock model, the coupling mechanism between shock waves and FBG was theoretically analyzed. The result shows that the wave will change the period </span><span><span style="white-space:nowrap;">Ʌ</span></span><span style="font-family:;" "=""> and effective refractive index </span><i><span style="font-family:;" "="">n</span></i><span style="font-family:;" "=""> of FBG, and further affect the initial wavelength value. The amplitude, phase and frequency of shock wave are directly related to the wavelength drifts of FBG. The transmitting velocity of shock wave in rock is affected by lithologic characteristics. The Elastic modulus, density and Poisson’s ratio of rock influence the initial wavelength value of FBG. This study provided a theoretical basis and practical application guidance for coal or rock burst monitoring with FBG sensing.</span>展开更多
In this study,we attempted to investigate the spatial gradient distributions of thermal shock-induced damage to granite with respect to associated deterioration mechanisms.First,thermal shock experiments were conducte...In this study,we attempted to investigate the spatial gradient distributions of thermal shock-induced damage to granite with respect to associated deterioration mechanisms.First,thermal shock experiments were conducted on granite specimens by slowly preheating the specimens to high temperatures,followed by rapid cooling in tap water.Then,the spatial gradient distributions of thermal shock-induced damage were investigated by computed tomography(CT)and image analysis techniques.Finally,the influence of the preheating temperature on the spatial gradients of the damage was discussed.The results show that the thermal shock induced by rapid cooling can cause more damage to granite than that induced by slow cooling.The thermal shock induced by rapid cooling can cause spatial gradient distributions of the damage to granite.The damage near the specimen surface was at a maximum,while the damage inside the specimen was at a minimum.In addition,the preheating temperature can significantly influence the spatial gradient distributions of the thermal shock-induced damage.The spatial gradient distribution of damage increased as the preheating temperature increased and then decreased significantly over 600C.When the preheating temperature was sufficiently high(e.g.800C),the gradient can be ignored.展开更多
Mining-induced seismicity occurs in numerous underground mines worldwide where extraction is conducted at great depths or in areas characterised by complex tectonic structure.It is accompanied by rock bursts,which res...Mining-induced seismicity occurs in numerous underground mines worldwide where extraction is conducted at great depths or in areas characterised by complex tectonic structure.It is accompanied by rock bursts,which result in the loss of working functionality and the possibility of accidents among personnel.The issue of a constant and reliable seismic hazard evaluation is of key signifcance for both the safety of miners and the stability of production.Research on its improvement is directed at developing new interpretive solutions and methods.The nature of the presented solution is the complex interpretation of seismological data that characterise rock mass seismicity and of underground measurement results in the form of a map presenting the longitudinal wave propagation velocity distribution in the rock surrounding the mined coal seam.The solution was tested in hard coal mines located in the Upper Silesian Coal Basin.The mines are equipped with a modern seismological system enabling the constant monitoring of seismicity together with hazard level evaluation as well as with seismic apparatus for conducting periodic measurements of the seismic wave propagation velocity before the mining face.Comprehensive seismic hazard evaluation criteria were determined based on the obtained results,involving the anomaly of the Gutenberg–Richter law“b”value and the maximum longitudinal seismic wave propagation velocity in the roof rock.The obtained experience and the result validation of this new comprehensive hazard evaluation method confrm its practical usefulness and indicate the directions of improvement for the solution in question.展开更多
It is accepted as a well-known fact that in different places on the Earth’s crust,a similar anthropogenic impact causes a dissimilar response.Seismic zoning maps are not designed to predict such geodynamic hazards as...It is accepted as a well-known fact that in different places on the Earth’s crust,a similar anthropogenic impact causes a dissimilar response.Seismic zoning maps are not designed to predict such geodynamic hazards as rock bursts,induced earthquakes,reactivation of tectonic faults,etc.,and therefore require careful adjustments in places of intense impact on the subsurface strata.In this regard,we consider the classification of the Earth’s crustal areas according to the degree of geodynamic hazard,i.e.its potential geodynamic response to anthropogenic intervention.This classification is based on the concept that there exists a critically stressed layer within the Earth’s crust.It is believed that such a critically stressed layer within the Earth’s crust extends from the Earth’s surface to a certain depth,and each point depends on the nature of the interaction between crustal blocks of different hierarchical levels.From this perspective,anthropogenic impact,such as mining operations,represents a direct impact upon the critically stressed zone.We recognize the hypothesis that the thicker the critical stressed rock layer,the stronger the response might be to anthropogenic intervention,as it has more accumulated energy.Four categories of geodynamic threat have been found and mapped.To verify this classification,the manifestations of the geodynamic hazards were studied.The intensity of geodynamic hazard increased from the first area to the fourth area.The phenomenon of large induced seismic events with hypocenters at great depths is explained on the basis of this theory,and could be associated with anthropogenic impacts from the surface directly on the regional zone of the critically stressed rock massif.The approach can be used to assess the geodynamic consequences of human exposure to the Earth’s crust.展开更多
基金the National Basic Research Program of China (Nos.2005 CB221504 and 2010CB226805)the Research Fund of the State Key Laboratory of Coal Resources and Mine Safety,CUMT (No.09KF08)the Foundation of the Henan Educational Committee (No.2010 A440003)
文摘Blasting and breaking of hard roof are main inducing causes of rock bursts in coal mines with danger of rock burst,and it is important to find out the frequency spectrum distribution laws of these dynamic stress waves and rock burst waves for researching the mechanism of rock burst.In this paper,Fourier transform as a micro-seismic signal conversion method of amplitude-time character to amplitude-frequency character is used to analyze the frequency spectrum characters of micro-seismic signal of blasting,hard roof breaking and rock bursts induced by the dynamic disturbance in order to find out the difference and relativity of different signals.The results indicate that blasting and breaking of hard roof are high frequency signals,and the peak values of dominant frequency of the signals are single.However,the results indicate that the rock bursts induced by the dynamic disturbance are low frequency signals,and there are two obvious peak values in the amplitude-frequency curve witch shows that the signals of rock bursts are superposition of low frequency signals and high frequency signals.The research conclusions prove that dynamic disturbance is necessary condition for rock bursts,and the conclusions provide a new way to research the mechanism of rock bursts.
文摘To achieve the monitor of rock burst in coal mine with fiber Bragg grating (FBG) sensing, the coupling mechanism between FBG and shock waves w<span style="font-family:;" "="">as</span><span style="font-family:;" "=""> theoretically analyzed. Based on Housner’s random shock model, the coupling mechanism between shock waves and FBG was theoretically analyzed. The result shows that the wave will change the period </span><span><span style="white-space:nowrap;">Ʌ</span></span><span style="font-family:;" "=""> and effective refractive index </span><i><span style="font-family:;" "="">n</span></i><span style="font-family:;" "=""> of FBG, and further affect the initial wavelength value. The amplitude, phase and frequency of shock wave are directly related to the wavelength drifts of FBG. The transmitting velocity of shock wave in rock is affected by lithologic characteristics. The Elastic modulus, density and Poisson’s ratio of rock influence the initial wavelength value of FBG. This study provided a theoretical basis and practical application guidance for coal or rock burst monitoring with FBG sensing.</span>
基金funded by the National Natural Science Foundation of China,China(Grant Nos.51778021,51627812 and 51678403)。
文摘In this study,we attempted to investigate the spatial gradient distributions of thermal shock-induced damage to granite with respect to associated deterioration mechanisms.First,thermal shock experiments were conducted on granite specimens by slowly preheating the specimens to high temperatures,followed by rapid cooling in tap water.Then,the spatial gradient distributions of thermal shock-induced damage were investigated by computed tomography(CT)and image analysis techniques.Finally,the influence of the preheating temperature on the spatial gradients of the damage was discussed.The results show that the thermal shock induced by rapid cooling can cause more damage to granite than that induced by slow cooling.The thermal shock induced by rapid cooling can cause spatial gradient distributions of the damage to granite.The damage near the specimen surface was at a maximum,while the damage inside the specimen was at a minimum.In addition,the preheating temperature can significantly influence the spatial gradient distributions of the thermal shock-induced damage.The spatial gradient distribution of damage increased as the preheating temperature increased and then decreased significantly over 600C.When the preheating temperature was sufficiently high(e.g.800C),the gradient can be ignored.
文摘Mining-induced seismicity occurs in numerous underground mines worldwide where extraction is conducted at great depths or in areas characterised by complex tectonic structure.It is accompanied by rock bursts,which result in the loss of working functionality and the possibility of accidents among personnel.The issue of a constant and reliable seismic hazard evaluation is of key signifcance for both the safety of miners and the stability of production.Research on its improvement is directed at developing new interpretive solutions and methods.The nature of the presented solution is the complex interpretation of seismological data that characterise rock mass seismicity and of underground measurement results in the form of a map presenting the longitudinal wave propagation velocity distribution in the rock surrounding the mined coal seam.The solution was tested in hard coal mines located in the Upper Silesian Coal Basin.The mines are equipped with a modern seismological system enabling the constant monitoring of seismicity together with hazard level evaluation as well as with seismic apparatus for conducting periodic measurements of the seismic wave propagation velocity before the mining face.Comprehensive seismic hazard evaluation criteria were determined based on the obtained results,involving the anomaly of the Gutenberg–Richter law“b”value and the maximum longitudinal seismic wave propagation velocity in the roof rock.The obtained experience and the result validation of this new comprehensive hazard evaluation method confrm its practical usefulness and indicate the directions of improvement for the solution in question.
基金partially used the materials obtained during grant implementation No.GК-1406(2009)of the Russian Ministry of Science and Education
文摘It is accepted as a well-known fact that in different places on the Earth’s crust,a similar anthropogenic impact causes a dissimilar response.Seismic zoning maps are not designed to predict such geodynamic hazards as rock bursts,induced earthquakes,reactivation of tectonic faults,etc.,and therefore require careful adjustments in places of intense impact on the subsurface strata.In this regard,we consider the classification of the Earth’s crustal areas according to the degree of geodynamic hazard,i.e.its potential geodynamic response to anthropogenic intervention.This classification is based on the concept that there exists a critically stressed layer within the Earth’s crust.It is believed that such a critically stressed layer within the Earth’s crust extends from the Earth’s surface to a certain depth,and each point depends on the nature of the interaction between crustal blocks of different hierarchical levels.From this perspective,anthropogenic impact,such as mining operations,represents a direct impact upon the critically stressed zone.We recognize the hypothesis that the thicker the critical stressed rock layer,the stronger the response might be to anthropogenic intervention,as it has more accumulated energy.Four categories of geodynamic threat have been found and mapped.To verify this classification,the manifestations of the geodynamic hazards were studied.The intensity of geodynamic hazard increased from the first area to the fourth area.The phenomenon of large induced seismic events with hypocenters at great depths is explained on the basis of this theory,and could be associated with anthropogenic impacts from the surface directly on the regional zone of the critically stressed rock massif.The approach can be used to assess the geodynamic consequences of human exposure to the Earth’s crust.