期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Research and application of schemes for constructing concrete pillars in large section finishing cut in backfill coal mining 被引量:3
1
作者 Sun Qiang Zhang Jixiong +2 位作者 Ju Feng Li Linyue Zhao Xu 《International Journal of Mining Science and Technology》 SCIE EI CSCD 2015年第6期915-920,共6页
Based on the technology of controlling surrounding rock deformation by constructing concrete pillars in large section finishing cut in backfill coal mining, the characteristics of vertical stress on concrete pillars a... Based on the technology of controlling surrounding rock deformation by constructing concrete pillars in large section finishing cut in backfill coal mining, the characteristics of vertical stress on concrete pillars and main factors influencing pillar stability are analyzed. By building a Winkler elastic foundation mechanical model for the support system constituted of coal pillar, backfill body and concrete pillars, mechanical calculation on stability of concrete pillar is carried out to evaluate the pillar stability and safety. Seven numeral models in three schemes with different pillar sizes, inter-row distances and compression ratios at the stopes were analyzed through numerical simulation according to width reduction principle. The practice of finishing cut at IIIB44 workface at Yangzhuang coal mine shows that: when the actual compression ratio is 86.5%, construction size inside the finishing cut is 2000 mm x 2000 mm and the interval between concrete pillars is 2000 mm x 2000 mm, the pillars can be stable with the maximum movement of two sides of each pillar being only 83 mm and 54 mm, which achieves the expected effect. 展开更多
关键词 concrete pillar Finishing cutNumerical simulation Surrounding rock deformation
下载PDF
Influence of interface morphology on dynamic behavior and energy dissipation of bi-material discs 被引量:1
2
作者 Zi-long ZHOU Jian-you LU +1 位作者 Xin CAI Yi-chao RUI 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2022年第7期2339-2352,共14页
To investigate the dynamic behavior and energy dissipation of the rock−concrete interface,dynamic splitting tests on bi-material discs were conducted by using the split Hopkinson pressure bar.The test results reveal t... To investigate the dynamic behavior and energy dissipation of the rock−concrete interface,dynamic splitting tests on bi-material discs were conducted by using the split Hopkinson pressure bar.The test results reveal that with the change of the interface inclination angles(θ),the influence of interface groove width on the bearing capacity of specimens also varies.Whenθincreases from 0°to 30°,the bearing capacity of the specimen increases first and then decreases with the rise of the interface groove width;the optimal groove width on the rock surface in this range of interface inclination angles is 5 mm.Whenθincreases from 45°to 90°,the bearing capacity of the specimen has no obvious change.Moreover,whenθincreases from 0°to 45°,the dissipated energy of the specimens rises obviously at first and then tends to be stable as the width of the interface groove increases. 展开更多
关键词 rockconcrete interface Brazilian disc splitting fracture development interface mechanical properties dynamic behavior energy dissipation
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部