The grouted bolt,combining rock bolting with grouting techniques,provides an effective solution for controlling the surrounding rock in deep soft rock and fractured roadways.It has been extensively applied in numerous...The grouted bolt,combining rock bolting with grouting techniques,provides an effective solution for controlling the surrounding rock in deep soft rock and fractured roadways.It has been extensively applied in numerous deep mining areas characterized by soft rock roadways,where it has demonstrated remarkable control results.This article systematically explores the evolution of grouted bolting,covering its theoretical foundations,design methods,materials,construction processes,monitoring measures,and methods for assessing its effectiveness.The overview encompassed several key elements,delving into anchoring theory and grouting reinforcement theory.The new principle of high pretensioned high-pressure splitting grouted bolting collaborative active control is introduced.A fresh method for dynamic information design is also highlighted.The discussion touches on both conventional grouting rock bolts and cable bolts,as well as innovative grouted rock bolts and cables characterized by their high pretension,strength,and sealing hole pressure.An examination of the merits and demerits of standard inorganic and organic grouting materials versus the new inorganic–organic composite materials,including their specific application conditions,was conducted.Additionally,the article presents various methods and instruments to assess the support effect of grouting rock bolts,cable bolts,and grouting reinforcement.Furthermore,it provides a foundation for understanding the factors influencing decisions on grouted bolting timing,the sequence of grouting,the pressure applied,the volume of grout used,and the strategic arrangement of grouted rock bolts and cable bolts.The application of the high pretensioned high-pressure splitting grouted bolting collaborative control technology in a typical kilometer-deep soft rock mine in China—the soft coal seam and soft rock roadway in the Kouzidong coal mine,Huainan coal mining area,was introduced.Finally,the existing problems in grouted bolting control technology for deep soft rock roadways are analyzed,and the future development trend of grouted bolting control technology is anticipated.展开更多
The surrounding rock of roadways exhibits intricate characteristics of discontinuity and heterogeneity.To address these complexities,this study employs non-local Peridynamics(PD)theory and reconstructs the kernel func...The surrounding rock of roadways exhibits intricate characteristics of discontinuity and heterogeneity.To address these complexities,this study employs non-local Peridynamics(PD)theory and reconstructs the kernel function to represent accurately the spatial decline of long-range force.Additionally,modifications to the traditional bondbased PD model are made.By considering the micro-structure of coal-rock materials within a uniform discrete model,heterogeneity characterized by bond random pre-breaking is introduced.This approach facilitates the proposal of a novel model capable of handling the random distribution characteristics of material heterogeneity,rendering the PD model suitable for analyzing the deformation and failure of heterogeneous layered coal-rock mass structures.The established numerical model and simulation method,termed the sub-homogeneous PD model,not only incorporates the support effect but also captures accurately the random heterogeneous micro-structure of roadway surrounding rock.The simulation results obtained using this model show good agreement with field measurements from the Fucun coal mine,effectively validating the model’s capability in accurately reproducing the deformation and failure mode of surrounding rock under bolt-supported(anchor cable).The proposed subhomogeneous PD model presents a valuable and effective simulation tool for studying the deformation and failure of roadway surrounding rock in coal mines,offering new insights and potential advancements.展开更多
The construction of coal mines often encounters deep composite soft rock roadways,which is characterized by significant deformation and poor stability.To deeply study the failure mechanism and large deformation challe...The construction of coal mines often encounters deep composite soft rock roadways,which is characterized by significant deformation and poor stability.To deeply study the failure mechanism and large deformation challenges of a composite strata roadway in deep and soft rock masses,a numerical model of 3DEC tetrahedral blocks was established based on the method of rock quality designation(RQD).The results showed that original support cannot prevent asymmetric failure and large deformation due to the adverse geological environment and unsuitable support design.According to the failure characteristics,a coupling support of“NPR bolt/cable+mesh+shotcrete+steel pipe”was proposed to control the stability of the surrounding rock.The excellent mechanical properties of large deformation(approximately 400 mm)and high constant resistance force(bolt with 180 k N;cable with 350 k N)were evaluated by the tensile tests.The numerical results showed that the maximum deformation was minimized to 243 mm,and the bearing capacity of the surrounding rock of the roadway was enhanced.The field test results showed that the maximum deformation of the surrounding rock was 210 mm,and the forces of the NPR bolt and cable were stable at approximately 180 k N and 350 k N,respectively.This demonstrated the effectiveness of the coupling support with the NPR bolt and cable,which could be a guiding significance for the safety control of large deformation and failure in deep composite soft rock roadways.展开更多
Aiming at the problems of large deformation and difficult maintenance of deep soft rock roadway under the influence of high ground stress and strong dynamic pressure, taking the surrounding rock control of 1105 lane i...Aiming at the problems of large deformation and difficult maintenance of deep soft rock roadway under the influence of high ground stress and strong dynamic pressure, taking the surrounding rock control of 1105 lane in Hudi Coal Industry as an example, the deformation characteristics and surrounding rock control measures of deep soft rock roadway are analyzed and discussed by means of geological data analysis, roadway deformation monitoring, rock crack drilling and field test. The results show that the main causes of roadway deformation are high ground stress, synclinal tectonic stress, advance mining stress, roadway penetration and surrounding rock fissure development. Based on the deformation characteristics and mechanism of lane 1105, the supporting countermeasures of “roof synergic support, layered grouting, anchor cable beam support, closed hardening of roadway surface” are proposed, which can provide reference for the control of deep roadway surrounding rock under similar conditions.展开更多
In actual production,deep coal mine roadways are often under typical static-dynamic coupling stress(SDCS)conditions with high ground stress and strong dynamic disturbances.With the increasing number of disasters and a...In actual production,deep coal mine roadways are often under typical static-dynamic coupling stress(SDCS)conditions with high ground stress and strong dynamic disturbances.With the increasing number of disasters and accidents induced by SDCS conditions,the safe and efficient production of coal mines is seriously threatened.Therefore,it is of great practical significance to study the deformation and failure characteristics of the roadway surrounding rock under SDCS.In this paper,the effects of different in-situ stress fields and dynamic load conditions on the surrounding rock are studied by numerical simulations,and the deformation and failure characteristics are obtained.According to the simulation results,the horizontal stress,vertical stress and dynamic disturbance have a positive correlation with the plastic failure of the surrounding rock.Among these factors,the influence of the dynamic disturbance is the most substantial.Under the same stress conditions,the extents of deformation and plastic failure of the roof and ribs are always greater than those of the floor.The effect of horizontal stresses on the roadway deformation is more notable than that of vertical stresses.The results indicate that for the roadway under high-stress conditions,the in-situ stress test must be strengthened first.After determining the magnitude of the in-situ stress,the location of the roadway should be reasonably arranged in the design to optimize the mining sequence.For roadways that are strongly disturbed by dynamic loads,rock supports(rebar/cable bolts,steel set etc.)that are capable of maintaining their effectiveness without failure after certain dynamic loads are required.The results of this study contribute to understanding the characteristics of the roadway deformation and failure under SDCS,and can be used to provide a basis for the support design and optimization under similar geological and geotechnical circumstances.展开更多
Analyzing the mineral composition, mechanical properties and ground stress testing in surrounding rock,the study investigated the failure mechanism of deep soft rock roadway with high stress. The boltgrouting combined...Analyzing the mineral composition, mechanical properties and ground stress testing in surrounding rock,the study investigated the failure mechanism of deep soft rock roadway with high stress. The boltgrouting combined support system was proposed to prevent such failures. By means of FLAC3D numerical simulation and similar material simulation, the feasibility of the support design and the effectiveness of support parameters were discussed. According to the monitoring the surface and deep displacement in surrounding rock as well as bolt axial load, this paper analyzed the deformation of surrounding rock and the stress condition of the support structure. The monitor results were used to optimize the proposed support scheme. The results of field monitors demonstrate that the bolt-grouting combined support technology could improve the surround rock strength and bearing capacity of support structure, which controlled the great deformation failure and rheological property effectively in deep soft rock roadway with high stress. As a result, the long term stability and safety are guaranteed.展开更多
Gob-side entry driving can increase coal recovery ratio, and it is implied in many coal mines. Based on geological condition of 10416 working face tailentry in Yangliu Coal Mine, the surrounding rock deformation chara...Gob-side entry driving can increase coal recovery ratio, and it is implied in many coal mines. Based on geological condition of 10416 working face tailentry in Yangliu Coal Mine, the surrounding rock deformation characteristics of gob-side entry driving with narrow coal pillar is analysed, reasonable size of coal pillar and reasonable roadway excavation time after mining are achieved. Surrounding rock control technology and effective roadway side sealing technology are proposed and are taken into field practice. The results showed that a safer and more efficient mining of working face can be achieved. In addition, results of this paper also have important theoretical significance and valuable reference for surrounding rock control technology of gob-side entry driving with narrow coal pillar under special geological condition.展开更多
A similar material model and a numerical simulation were constructed and are described herein. The deformation and failure of surrounding rock of broken and soft roadway are studied by using these models. The deformat...A similar material model and a numerical simulation were constructed and are described herein. The deformation and failure of surrounding rock of broken and soft roadway are studied by using these models. The deformation of the roof and floor, the relative deformation of the two sides and the deformation of the deep surrounding rock are predicted using the model. Measurements in a working mine are compared to the results of the models. The results show that the surrounding rock shows clear theological features under high stress conditions. Deformation is unequally distributed across the whole section. The surrounding rock exhibited three deformation stages: displacement caused by stress concentration, theological displacement after the digging effects had stabilized and displacement caused by supporting pressure of the roadway. Floor heave was serious, accounting for 65% of the total deformation of the roof and floor. Floor heave is the main reason for failure of the surrounding rock. The reasons for deformation of the surrounding rock are discussed based on the similar material and numerical simulations.展开更多
Soft rock surrounding deep roadway has poor stability and long-term rheological effect. More and larger deformation problems of surrounding rock occur due to adverse supporting measures for such roadways, which not on...Soft rock surrounding deep roadway has poor stability and long-term rheological effect. More and larger deformation problems of surrounding rock occur due to adverse supporting measures for such roadways, which not only affects the engineering safety critically but also improves the maintenance costs. This paper takes the main rail roadway with severely deformation in China's Zaoquan coal mine as an example to study the long-term deformation tendency and damage zone by means of in-situ deformation monitoring and acoustic wave testing technique. A three-dimensional finite element model reflecting the engineering geological condition and initial design scheme is established by ABAQUS. Then, on the basis of field monitoring deformation data, the surrounding rock geotechnical and theological parameters of the roadway are obtained by back analysis. A combined supporting technology with U-shaped steel support and anchor-grouting is proposed for the surrounding soft rock. The numerical simulation of the combined supporting technology and in-situ deformation monitoring results show that the soft rock surrounding the roadway has been held effectively.展开更多
Based on deformation and failure characteristics of the second belt conveyor roadway at level II of Zhuxianzhuang coal mine, laboratory experiments, numerical calculation and field test were adopted to analyze the com...Based on deformation and failure characteristics of the second belt conveyor roadway at level II of Zhuxianzhuang coal mine, laboratory experiments, numerical calculation and field test were adopted to analyze the composition and microstructure of mudstone, the law of mudstone hydration and its strength weakening induced by water, the characteristics of surrounding rock deformation and failure under the action of confined water. Results showed that montmorillonite clay minerals accounted for as much as 76% of mudstone, with a large number of pores existing in the microstructure. Besides, as the molecular structure of montmorillonite changed, mudstone microstructure damage occurred with the macroscopic manifestation of its theological instability. Weakening degree of confined water on residual strength of mudstone was almost 50%. The instability mechanism of soft rock roadway caused by high confined water is that surrounding rock circulates the process of "fracture-seepage-mud ding-closed" twice, which weakens its strength and leads to roadway instability. A combined support technology, namely the, "high-toughness sealing layer + hollow grouting cables + full-length anchoring bolts with deep borehole" was proposed. Based on field observation, the soft rock roadway was controlled effectively, which also verified the effectiveness of new control technology for surrounding rock.展开更多
The study concentrates mainly on the development of failure process incomposite rock mass. By use of acoustic emission (AE), convergence inspection, pressure monitoring,level measurement techniques and the modem signa...The study concentrates mainly on the development of failure process incomposite rock mass. By use of acoustic emission (AE), convergence inspection, pressure monitoring,level measurement techniques and the modem signal analysis technology, as well as scan electronmicroscopy (SEM) experiment, various aspects of nonlinear dynamic damage of composite rock masssurrounding the transport roadway in Linglong gold mine are discussed. According to the monitoringresults, the stability of the rock mass can be synthetically evaluated, and the intrinsic relationbetween the damage and the characteristic parameters of acoustic emission can be determined. Thelocation of the damage of rock mass can also be detected based on the acoustic emission couplemonitoring signals. Finally, the key factors which influence the stability of the transport roadwaysupported by composite hard rock materials are found out.展开更多
Due to high ground stress and mining disturbance, the deformation and failure of deep soft rock roadway is serious, and invalidation of the anchor net-anchor cable supporting structure occurs. The failure characterist...Due to high ground stress and mining disturbance, the deformation and failure of deep soft rock roadway is serious, and invalidation of the anchor net-anchor cable supporting structure occurs. The failure characteristics of roadways revealed with the help of the ground pressure monitoring. Theoretical analysis was adopted to analyze the influence of mining disturbance on stress distribution in surrounding rock,and the change of stress was also calculated. Considering the change of stress in surrounding rock of bottom extraction roadway, the displacement, plastic zone and distribution law of principal stress difference under different support schemes were studied by means of FLAC3D. The supporting scheme of U-shaped steel was proposed for bottom extraction roadway that underwent mining disturbance. We carried out a similarity model test to verify the effect of support in dynamic pressure. Monitoring results demonstrated the change rules of deformation and stress of surrounding rock in different supporting schemes. The supporting scheme of U-shaped steel had an effective control on deformation of surrounding rock. The scheme was successfully applied in underground engineering practice, and achieved good technical and economic benefits.展开更多
In deep underground mining,achieving stable support for roadways along with long service life is critical and the complex geological environment at such depths frequently presents a major challenge.Owing to the coupli...In deep underground mining,achieving stable support for roadways along with long service life is critical and the complex geological environment at such depths frequently presents a major challenge.Owing to the coupling action of multiple factors such as deep high stress,adjacent faults,cross-layer design,weak lithology,broken surrounding rock,variable cross-sections,wide sections up to 9.9 m,and clusters of nearby chambers,there was severe deformation and breakdown in the No.10 intersection of the roadway of large-scale variable cross-section at the−760 m level in a coal mine.As there are insufcient examples in engineering methods pertaining to the geological environment described above,the numerical calculation model was oversimplifed and support theory underdeveloped;therefore,it is imperative to develop an efective support system for the stability and sustenance of deep roadways.In this study,a quantitative analysis of the geological environment of the roadway through feld observations,borehole-scoping,and ground stress testing is carried out to establish the FLAC 3D variable cross-section crossing roadway model.This model is combined with the strain softening constitutive(surrounding rock)and Mohr–Coulomb constitutive(other deep rock formations)models to construct a compression arch mechanical model for deep soft rock,based on the quadratic parabolic Mohr criterion.An integrated control technology of bolting and grouting that is mainly composed of a high-strength hollow grouting cable bolt equipped with modifed cement grouting materials and a high-elongation cable bolt is developed by analyzing the strengthening properties of the surrounding rock before and after bolting,based on the Heok-Brown criterion.As a result of on-site practice,the following conclusions are drawn:(1)The plastic zone of the roof of the cross roadway is approximately 6 m deep in this environment,the tectonic stress is nearly 30 MPa,and the surrounding rock is severely fractured.(2)The deformation of the roadway progressively increases from small to large cross-sections,almost doubling at the largest cross-section.The plastic zone is concentrated at the top plate and shoulder and decreases progressively from the two sides to the bottom corner.The range of stress concentration at the sides of the intersection roadway close to the passageway is wider and higher.(3)The 7 m-thick reinforced compression arch constructed under the strengthening support scheme has a bearing capacity enhanced by 1.8 to 2.3 times and increase in thickness of the bearing structure by 1.76 times as compared to the original scheme.(4)The increase in the mechanical parameters c andφof the surrounding rock after anchoring causes a signifcant increase inσt;the pulling force of the cable bolt beneath the new grouting material is more than twice that of ordinary cement grout,and according to the test,the supporting stress feld shows that the 7.24 m surrounding rock is compacted and strengthened in addition to providing a strong foundation for the bolt(cable).On-site monitoring shows that the 60-days convergence is less than 30 mm,indicating that the stability control of the roadway is successful.展开更多
The mechanism of floor heave was analyzed by establishing mechanics models and solving differential equations. The amount of floor heave is proportional to the abutment pressure of surrounding rock, roadway width, and...The mechanism of floor heave was analyzed by establishing mechanics models and solving differential equations. The amount of floor heave is proportional to the abutment pressure of surrounding rock, roadway width, and the distance of support pressure peak to the roadway and is inversely proportional to the elastic modulus of floor rock. Using FLAC2D to simulate floor rock grouting in soft rock roadway verifies the active role of floor rock grouting in the floor controlling of soft rock roadway; floor rock grouting and grouting range directly impact on the stability scope of surrounding rock, namely, with the increase of grouting range, the subsidence of roof, the approach of both sides, and the amount of floor heave decreased gradually, the stability of surrounding rock is enhanced展开更多
Comparing with the resin bolt, the hydraulic expansion bolt has different anchoring mechanism and application advantage. According to the working mechanism of the hydraulic expansion bolt, its anchoring force is expre...Comparing with the resin bolt, the hydraulic expansion bolt has different anchoring mechanism and application advantage. According to the working mechanism of the hydraulic expansion bolt, its anchoring force is expressed in four forms including support anchoring force, tension anchoring force, expansion anchoring force and tangent anchoring force, and their values can be obtained on the basis of each calculation formula. Among them, the expansion anchoring force, which is the unique anchoring force of the hydraulic expansion bolt, can provide confining pressure to increase the strength of rock. Aiming at solving the problem of stability control in the soft rock roadway in Jinbaotun Coal Mine which has a double layer of 40 U-type sheds and cannot provide enough resistance support to control floor heave, the study reveals the mechanism of floor heave in the soft rock roadway, and designs the reasonable support parameters of the hydraulic expansion bolts. The observed results of floor convergence indicate that the hydraulic expansion bolts can prevent the development and flow of the plastic zone in the floor rock to control floor heave. Research results enrich the control technology in the soft rock roadway.展开更多
Square confined concrete arch is increasingly used in deep soft rock roadway support because of its advantages of high strength and construction convenience.However,the design of confined concrete arch in underground ...Square confined concrete arch is increasingly used in deep soft rock roadway support because of its advantages of high strength and construction convenience.However,the design of confined concrete arch in underground engineering still remains in experience-based method and lacks quantitative analysis.As a connecting component between arch sections,the connection joints have an important influence on the internal force distribution and failure mechanism of support arch.Therefore,a reasonable design of arch joints is the premise of rational support design.Taking Liangjia Coal Mine,a typical deep soft rock mine in China,as research background,this paper fully compared the most widely used joint types of confined concrete arch as analytical objects:flange joints and casing joints.The main failure modes of these two kinds of joints under bending moment are defined.Laboratory and numerical tests are carried out to study the mechanical characteristics of joints.Based on the M-θ curve,the influence law of different design parameters is analyzed,and the design principles of joints are proposed.The research results could provide a theoretical basis for the design and application of confined concrete arch in related projects.展开更多
Surrounding rocks of weakly consolidated soft rock roadway show obvious strain softening and dilatancy effects after excavation. A damage coefficient concerning modulus attenuation was defined. Response models of stre...Surrounding rocks of weakly consolidated soft rock roadway show obvious strain softening and dilatancy effects after excavation. A damage coefficient concerning modulus attenuation was defined. Response models of stress and displacement of surrounding rock of soft rock roadway and analytical expressions to calculate plastic zones under different interior pressures and non-uniform original rock stresses were derived based on damage theories and a triple linear elastic-plastic strain softening model. Influence laws of dilatancy gradient on damage development, distributions of stresses and displacement in plastic region were analyzed. Interior pressure conditions to develop plastic region under different origin rock stresses were established and their influences on plastic region distribution were also discussed. The results show that the order of maximum principle stress is exchanged between ~0 and trr with the increase of interior pressure P0, which causes distributions of plastic zone and stress shift. Dilatancy effect which has great influences on the damage propagation and displacements in plastic region has little effect on the size of plastic region and stress responses. The conclusions provide a theoretical basis for a reasonable evaluation of stability and effective supporting of weakly consolidated soft rock roadway.展开更多
In order to study the rules of distribution in a plastic zone of rocks, surrounding a roadway, affected by tectonic stress, we first analyzed the mechanics of a roadway affected by tectonic stress and derived a theore...In order to study the rules of distribution in a plastic zone of rocks, surrounding a roadway, affected by tectonic stress, we first analyzed the mechanics of a roadway affected by tectonic stress and derived a theoretical formula for the plastic zone of rocks surrounding a roadway. We also analyzed the distribution characteristics of the plastic zone under different levels of tectonic stress, vertical pressure, cohesion and friction angle of the surrounding rock. Secondly, we used numerical simulation to analyze the range and shape features of the plastic zone of rocks surrounding the roadway, given different tectonic stress levels. Finally we used a rock drilling detector to carry out field measurements on the broken state of rock surrounding the roadway at the –700 substation and channels in the Xinzhuang mine of the Shenhuo mining area. Given the measured ground stress, we analyzed the relationship between tectonic stress and the distribution of this plastic zone. Our results show that the range of the plastic zone at the top and bottom of the roadway increases with an increase in tectonic stress and this increase is especially obvious at the roadway corner.展开更多
Aiming to get the strata behavior and stability rules of surrounding rock of the main return airway of Yushujing Coal Mine, convergence deformation of two sides and force of U-shaped steel yieldable support and bolt w...Aiming to get the strata behavior and stability rules of surrounding rock of the main return airway of Yushujing Coal Mine, convergence deformation of two sides and force of U-shaped steel yieldable support and bolt were monitored, and deformation of surrounding rock and mechanical characteristics of support structure were timely obtained to guide the informa- tion construction and optimize supporting parameters in water-rich soft rock roadway. The field monitoring results indicate the following. (1) Convergence displacement of rock surface increases with time continuity and shows surrounding rock's intense theological behavior. The original support scheme cannot control the large deformation and strongly theological behavior; (2) Without backfilling, the U-shaped steel support begins to bear load after erecting for 4-7 days and increases rapidly in the first 30 days. The U-shaped steel support at the right shoulder and top of roadway bears a larger force and the left side and shoulder bears a smaller force; (3) The stress of bolt increasing over time and at the right shoulder of roadway has larger growth and value. The mechanism of rock deformation and the failure and strata behavior in water-rich soft rock roadway are revealed based on the results of the measured relaxation zone of surrounding rock, measured stresses, and the rock mechanics tests.展开更多
The properties of broken rock before and after grouting reinforcement are studied. Testing results show that grouting can raise the residual strength of broken rock, and the broken rockness by grouting can keep the st...The properties of broken rock before and after grouting reinforcement are studied. Testing results show that grouting can raise the residual strength of broken rock, and the broken rockness by grouting can keep the steady supporting capacity within a relatively large deformation range. Revealing of the characteristics of stage deformation and damage process comes to the conclusion that the supporting of soft rock roadway should be analyzed in a dynamic view, and the grouting should be delayed at a proper occasion. Based on the above, the stepwise reinforcement technology characterized by immediate shotcreting, timely bolting and delay grouting is put forward and illustrated with a successful engineering practice.展开更多
基金the National Natural Science Foundation of China(Nos.52304141 and 52074154)。
文摘The grouted bolt,combining rock bolting with grouting techniques,provides an effective solution for controlling the surrounding rock in deep soft rock and fractured roadways.It has been extensively applied in numerous deep mining areas characterized by soft rock roadways,where it has demonstrated remarkable control results.This article systematically explores the evolution of grouted bolting,covering its theoretical foundations,design methods,materials,construction processes,monitoring measures,and methods for assessing its effectiveness.The overview encompassed several key elements,delving into anchoring theory and grouting reinforcement theory.The new principle of high pretensioned high-pressure splitting grouted bolting collaborative active control is introduced.A fresh method for dynamic information design is also highlighted.The discussion touches on both conventional grouting rock bolts and cable bolts,as well as innovative grouted rock bolts and cables characterized by their high pretension,strength,and sealing hole pressure.An examination of the merits and demerits of standard inorganic and organic grouting materials versus the new inorganic–organic composite materials,including their specific application conditions,was conducted.Additionally,the article presents various methods and instruments to assess the support effect of grouting rock bolts,cable bolts,and grouting reinforcement.Furthermore,it provides a foundation for understanding the factors influencing decisions on grouted bolting timing,the sequence of grouting,the pressure applied,the volume of grout used,and the strategic arrangement of grouted rock bolts and cable bolts.The application of the high pretensioned high-pressure splitting grouted bolting collaborative control technology in a typical kilometer-deep soft rock mine in China—the soft coal seam and soft rock roadway in the Kouzidong coal mine,Huainan coal mining area,was introduced.Finally,the existing problems in grouted bolting control technology for deep soft rock roadways are analyzed,and the future development trend of grouted bolting control technology is anticipated.
基金supported by the National Natural Science Foundation of China(Nos.12302264,52104004,12072170,and 12202225)the Natural Science Foundation of Shandong Province(No.ZR2021QA042)Special Fund for Taishan Scholar Project(No.Tsqn202211180).
文摘The surrounding rock of roadways exhibits intricate characteristics of discontinuity and heterogeneity.To address these complexities,this study employs non-local Peridynamics(PD)theory and reconstructs the kernel function to represent accurately the spatial decline of long-range force.Additionally,modifications to the traditional bondbased PD model are made.By considering the micro-structure of coal-rock materials within a uniform discrete model,heterogeneity characterized by bond random pre-breaking is introduced.This approach facilitates the proposal of a novel model capable of handling the random distribution characteristics of material heterogeneity,rendering the PD model suitable for analyzing the deformation and failure of heterogeneous layered coal-rock mass structures.The established numerical model and simulation method,termed the sub-homogeneous PD model,not only incorporates the support effect but also captures accurately the random heterogeneous micro-structure of roadway surrounding rock.The simulation results obtained using this model show good agreement with field measurements from the Fucun coal mine,effectively validating the model’s capability in accurately reproducing the deformation and failure mode of surrounding rock under bolt-supported(anchor cable).The proposed subhomogeneous PD model presents a valuable and effective simulation tool for studying the deformation and failure of roadway surrounding rock in coal mines,offering new insights and potential advancements.
基金supported by the National Natural Science Foundation of China(Grant No.51874311,52174096)。
文摘The construction of coal mines often encounters deep composite soft rock roadways,which is characterized by significant deformation and poor stability.To deeply study the failure mechanism and large deformation challenges of a composite strata roadway in deep and soft rock masses,a numerical model of 3DEC tetrahedral blocks was established based on the method of rock quality designation(RQD).The results showed that original support cannot prevent asymmetric failure and large deformation due to the adverse geological environment and unsuitable support design.According to the failure characteristics,a coupling support of“NPR bolt/cable+mesh+shotcrete+steel pipe”was proposed to control the stability of the surrounding rock.The excellent mechanical properties of large deformation(approximately 400 mm)and high constant resistance force(bolt with 180 k N;cable with 350 k N)were evaluated by the tensile tests.The numerical results showed that the maximum deformation was minimized to 243 mm,and the bearing capacity of the surrounding rock of the roadway was enhanced.The field test results showed that the maximum deformation of the surrounding rock was 210 mm,and the forces of the NPR bolt and cable were stable at approximately 180 k N and 350 k N,respectively.This demonstrated the effectiveness of the coupling support with the NPR bolt and cable,which could be a guiding significance for the safety control of large deformation and failure in deep composite soft rock roadways.
文摘Aiming at the problems of large deformation and difficult maintenance of deep soft rock roadway under the influence of high ground stress and strong dynamic pressure, taking the surrounding rock control of 1105 lane in Hudi Coal Industry as an example, the deformation characteristics and surrounding rock control measures of deep soft rock roadway are analyzed and discussed by means of geological data analysis, roadway deformation monitoring, rock crack drilling and field test. The results show that the main causes of roadway deformation are high ground stress, synclinal tectonic stress, advance mining stress, roadway penetration and surrounding rock fissure development. Based on the deformation characteristics and mechanism of lane 1105, the supporting countermeasures of “roof synergic support, layered grouting, anchor cable beam support, closed hardening of roadway surface” are proposed, which can provide reference for the control of deep roadway surrounding rock under similar conditions.
基金Projects(52074166,51774195,51704185)supported by the National Natural Science Foundation of ChinaProject(2019M652436)supported by the China Postdoctoral Science Foundation。
文摘In actual production,deep coal mine roadways are often under typical static-dynamic coupling stress(SDCS)conditions with high ground stress and strong dynamic disturbances.With the increasing number of disasters and accidents induced by SDCS conditions,the safe and efficient production of coal mines is seriously threatened.Therefore,it is of great practical significance to study the deformation and failure characteristics of the roadway surrounding rock under SDCS.In this paper,the effects of different in-situ stress fields and dynamic load conditions on the surrounding rock are studied by numerical simulations,and the deformation and failure characteristics are obtained.According to the simulation results,the horizontal stress,vertical stress and dynamic disturbance have a positive correlation with the plastic failure of the surrounding rock.Among these factors,the influence of the dynamic disturbance is the most substantial.Under the same stress conditions,the extents of deformation and plastic failure of the roof and ribs are always greater than those of the floor.The effect of horizontal stresses on the roadway deformation is more notable than that of vertical stresses.The results indicate that for the roadway under high-stress conditions,the in-situ stress test must be strengthened first.After determining the magnitude of the in-situ stress,the location of the roadway should be reasonably arranged in the design to optimize the mining sequence.For roadways that are strongly disturbed by dynamic loads,rock supports(rebar/cable bolts,steel set etc.)that are capable of maintaining their effectiveness without failure after certain dynamic loads are required.The results of this study contribute to understanding the characteristics of the roadway deformation and failure under SDCS,and can be used to provide a basis for the support design and optimization under similar geological and geotechnical circumstances.
基金financial assistance provided by the National Natural Science Foundation of China (No. 51404262)the Natural Science Foundation of Jiangsu Province of China (No. BK20140213)the Basal Research Fund of China Central College (No. 2015QNA60)
文摘Analyzing the mineral composition, mechanical properties and ground stress testing in surrounding rock,the study investigated the failure mechanism of deep soft rock roadway with high stress. The boltgrouting combined support system was proposed to prevent such failures. By means of FLAC3D numerical simulation and similar material simulation, the feasibility of the support design and the effectiveness of support parameters were discussed. According to the monitoring the surface and deep displacement in surrounding rock as well as bolt axial load, this paper analyzed the deformation of surrounding rock and the stress condition of the support structure. The monitor results were used to optimize the proposed support scheme. The results of field monitors demonstrate that the bolt-grouting combined support technology could improve the surround rock strength and bearing capacity of support structure, which controlled the great deformation failure and rheological property effectively in deep soft rock roadway with high stress. As a result, the long term stability and safety are guaranteed.
基金Financial support for this work was provided by the National Natural Science Foundation of China(Nos.51474005,51004002)
文摘Gob-side entry driving can increase coal recovery ratio, and it is implied in many coal mines. Based on geological condition of 10416 working face tailentry in Yangliu Coal Mine, the surrounding rock deformation characteristics of gob-side entry driving with narrow coal pillar is analysed, reasonable size of coal pillar and reasonable roadway excavation time after mining are achieved. Surrounding rock control technology and effective roadway side sealing technology are proposed and are taken into field practice. The results showed that a safer and more efficient mining of working face can be achieved. In addition, results of this paper also have important theoretical significance and valuable reference for surrounding rock control technology of gob-side entry driving with narrow coal pillar under special geological condition.
基金Project 40773040 supported by the National Basic Research Program of China
文摘A similar material model and a numerical simulation were constructed and are described herein. The deformation and failure of surrounding rock of broken and soft roadway are studied by using these models. The deformation of the roof and floor, the relative deformation of the two sides and the deformation of the deep surrounding rock are predicted using the model. Measurements in a working mine are compared to the results of the models. The results show that the surrounding rock shows clear theological features under high stress conditions. Deformation is unequally distributed across the whole section. The surrounding rock exhibited three deformation stages: displacement caused by stress concentration, theological displacement after the digging effects had stabilized and displacement caused by supporting pressure of the roadway. Floor heave was serious, accounting for 65% of the total deformation of the roof and floor. Floor heave is the main reason for failure of the surrounding rock. The reasons for deformation of the surrounding rock are discussed based on the similar material and numerical simulations.
基金Projects(51409154,41772299)supported by the National Natural Science Foundation of ChinaProject(J16LG03)supported by the Shandong Province Higher Educational Science and Technology Program,China+1 种基金Projects(2015JQJH106,2014TDJH103)supported by the SDUST Research Fund,ChinaProject(201630576)supported by the Tai’an Scientific and Technologic Development Project,China
文摘Soft rock surrounding deep roadway has poor stability and long-term rheological effect. More and larger deformation problems of surrounding rock occur due to adverse supporting measures for such roadways, which not only affects the engineering safety critically but also improves the maintenance costs. This paper takes the main rail roadway with severely deformation in China's Zaoquan coal mine as an example to study the long-term deformation tendency and damage zone by means of in-situ deformation monitoring and acoustic wave testing technique. A three-dimensional finite element model reflecting the engineering geological condition and initial design scheme is established by ABAQUS. Then, on the basis of field monitoring deformation data, the surrounding rock geotechnical and theological parameters of the roadway are obtained by back analysis. A combined supporting technology with U-shaped steel support and anchor-grouting is proposed for the surrounding soft rock. The numerical simulation of the combined supporting technology and in-situ deformation monitoring results show that the soft rock surrounding the roadway has been held effectively.
基金the Natural Science Foundation of Jiangsu Province(No.BK20141130)the Fundamental Research Funds for the Central Universities(No.2014QNB27)
文摘Based on deformation and failure characteristics of the second belt conveyor roadway at level II of Zhuxianzhuang coal mine, laboratory experiments, numerical calculation and field test were adopted to analyze the composition and microstructure of mudstone, the law of mudstone hydration and its strength weakening induced by water, the characteristics of surrounding rock deformation and failure under the action of confined water. Results showed that montmorillonite clay minerals accounted for as much as 76% of mudstone, with a large number of pores existing in the microstructure. Besides, as the molecular structure of montmorillonite changed, mudstone microstructure damage occurred with the macroscopic manifestation of its theological instability. Weakening degree of confined water on residual strength of mudstone was almost 50%. The instability mechanism of soft rock roadway caused by high confined water is that surrounding rock circulates the process of "fracture-seepage-mud ding-closed" twice, which weakens its strength and leads to roadway instability. A combined support technology, namely the, "high-toughness sealing layer + hollow grouting cables + full-length anchoring bolts with deep borehole" was proposed. Based on field observation, the soft rock roadway was controlled effectively, which also verified the effectiveness of new control technology for surrounding rock.
基金This work was financially supported by the National Natural Science Foundation of China, No.50074002.
文摘The study concentrates mainly on the development of failure process incomposite rock mass. By use of acoustic emission (AE), convergence inspection, pressure monitoring,level measurement techniques and the modem signal analysis technology, as well as scan electronmicroscopy (SEM) experiment, various aspects of nonlinear dynamic damage of composite rock masssurrounding the transport roadway in Linglong gold mine are discussed. According to the monitoringresults, the stability of the rock mass can be synthetically evaluated, and the intrinsic relationbetween the damage and the characteristic parameters of acoustic emission can be determined. Thelocation of the damage of rock mass can also be detected based on the acoustic emission couplemonitoring signals. Finally, the key factors which influence the stability of the transport roadwaysupported by composite hard rock materials are found out.
基金financial assistance provided by the National Natural Science Foundation of China (Nos. 51322401, 51404262, 51579239, 51574223)Shandong Provincial Key Laboratory of Depositional Mineralization & Sedimentary Minerals (Shandong University of Science and Technology) of China (No. CDPM2014KF03)+1 种基金China Postdoctoral Science Foundation (Nos. 2015M580493, 2014M551700, 2013M531424)the Natural Science Foundation of Jiangsu Province of China (No. BK20140213)
文摘Due to high ground stress and mining disturbance, the deformation and failure of deep soft rock roadway is serious, and invalidation of the anchor net-anchor cable supporting structure occurs. The failure characteristics of roadways revealed with the help of the ground pressure monitoring. Theoretical analysis was adopted to analyze the influence of mining disturbance on stress distribution in surrounding rock,and the change of stress was also calculated. Considering the change of stress in surrounding rock of bottom extraction roadway, the displacement, plastic zone and distribution law of principal stress difference under different support schemes were studied by means of FLAC3D. The supporting scheme of U-shaped steel was proposed for bottom extraction roadway that underwent mining disturbance. We carried out a similarity model test to verify the effect of support in dynamic pressure. Monitoring results demonstrated the change rules of deformation and stress of surrounding rock in different supporting schemes. The supporting scheme of U-shaped steel had an effective control on deformation of surrounding rock. The scheme was successfully applied in underground engineering practice, and achieved good technical and economic benefits.
基金supported by the National Natural Science Foundation of China(Grant Nos.52074296,52004286)the China Postdoctoral Science Foundation(Grant Nos.2020T130701,2019M650895).
文摘In deep underground mining,achieving stable support for roadways along with long service life is critical and the complex geological environment at such depths frequently presents a major challenge.Owing to the coupling action of multiple factors such as deep high stress,adjacent faults,cross-layer design,weak lithology,broken surrounding rock,variable cross-sections,wide sections up to 9.9 m,and clusters of nearby chambers,there was severe deformation and breakdown in the No.10 intersection of the roadway of large-scale variable cross-section at the−760 m level in a coal mine.As there are insufcient examples in engineering methods pertaining to the geological environment described above,the numerical calculation model was oversimplifed and support theory underdeveloped;therefore,it is imperative to develop an efective support system for the stability and sustenance of deep roadways.In this study,a quantitative analysis of the geological environment of the roadway through feld observations,borehole-scoping,and ground stress testing is carried out to establish the FLAC 3D variable cross-section crossing roadway model.This model is combined with the strain softening constitutive(surrounding rock)and Mohr–Coulomb constitutive(other deep rock formations)models to construct a compression arch mechanical model for deep soft rock,based on the quadratic parabolic Mohr criterion.An integrated control technology of bolting and grouting that is mainly composed of a high-strength hollow grouting cable bolt equipped with modifed cement grouting materials and a high-elongation cable bolt is developed by analyzing the strengthening properties of the surrounding rock before and after bolting,based on the Heok-Brown criterion.As a result of on-site practice,the following conclusions are drawn:(1)The plastic zone of the roof of the cross roadway is approximately 6 m deep in this environment,the tectonic stress is nearly 30 MPa,and the surrounding rock is severely fractured.(2)The deformation of the roadway progressively increases from small to large cross-sections,almost doubling at the largest cross-section.The plastic zone is concentrated at the top plate and shoulder and decreases progressively from the two sides to the bottom corner.The range of stress concentration at the sides of the intersection roadway close to the passageway is wider and higher.(3)The 7 m-thick reinforced compression arch constructed under the strengthening support scheme has a bearing capacity enhanced by 1.8 to 2.3 times and increase in thickness of the bearing structure by 1.76 times as compared to the original scheme.(4)The increase in the mechanical parameters c andφof the surrounding rock after anchoring causes a signifcant increase inσt;the pulling force of the cable bolt beneath the new grouting material is more than twice that of ordinary cement grout,and according to the test,the supporting stress feld shows that the 7.24 m surrounding rock is compacted and strengthened in addition to providing a strong foundation for the bolt(cable).On-site monitoring shows that the 60-days convergence is less than 30 mm,indicating that the stability control of the roadway is successful.
基金Supported by the National Natural Science Foundation of China (50874042) the National Natural Science Foundation of China (51174086)
文摘The mechanism of floor heave was analyzed by establishing mechanics models and solving differential equations. The amount of floor heave is proportional to the abutment pressure of surrounding rock, roadway width, and the distance of support pressure peak to the roadway and is inversely proportional to the elastic modulus of floor rock. Using FLAC2D to simulate floor rock grouting in soft rock roadway verifies the active role of floor rock grouting in the floor controlling of soft rock roadway; floor rock grouting and grouting range directly impact on the stability scope of surrounding rock, namely, with the increase of grouting range, the subsidence of roof, the approach of both sides, and the amount of floor heave decreased gradually, the stability of surrounding rock is enhanced
基金support by the National Natural Science Foundation of China (No.51174195)the Fundamental Research Funds for the Central Universities of China (No.2010QNA31)
文摘Comparing with the resin bolt, the hydraulic expansion bolt has different anchoring mechanism and application advantage. According to the working mechanism of the hydraulic expansion bolt, its anchoring force is expressed in four forms including support anchoring force, tension anchoring force, expansion anchoring force and tangent anchoring force, and their values can be obtained on the basis of each calculation formula. Among them, the expansion anchoring force, which is the unique anchoring force of the hydraulic expansion bolt, can provide confining pressure to increase the strength of rock. Aiming at solving the problem of stability control in the soft rock roadway in Jinbaotun Coal Mine which has a double layer of 40 U-type sheds and cannot provide enough resistance support to control floor heave, the study reveals the mechanism of floor heave in the soft rock roadway, and designs the reasonable support parameters of the hydraulic expansion bolts. The observed results of floor convergence indicate that the hydraulic expansion bolts can prevent the development and flow of the plastic zone in the floor rock to control floor heave. Research results enrich the control technology in the soft rock roadway.
基金This study was funded by The Natural Science Foundation of Shandong Province,China(Nos.ZR2017QEE013,2017GGX30101,2018GGX109001)The Young Scholars Program of Shandong University(2018WLJH76)The Research Fund of The State Key Laboratory of Coal Resources and safe Mining,CUMT(SKLCRSM18KF012).
文摘Square confined concrete arch is increasingly used in deep soft rock roadway support because of its advantages of high strength and construction convenience.However,the design of confined concrete arch in underground engineering still remains in experience-based method and lacks quantitative analysis.As a connecting component between arch sections,the connection joints have an important influence on the internal force distribution and failure mechanism of support arch.Therefore,a reasonable design of arch joints is the premise of rational support design.Taking Liangjia Coal Mine,a typical deep soft rock mine in China,as research background,this paper fully compared the most widely used joint types of confined concrete arch as analytical objects:flange joints and casing joints.The main failure modes of these two kinds of joints under bending moment are defined.Laboratory and numerical tests are carried out to study the mechanical characteristics of joints.Based on the M-θ curve,the influence law of different design parameters is analyzed,and the design principles of joints are proposed.The research results could provide a theoretical basis for the design and application of confined concrete arch in related projects.
基金Project(51174128)supported by the National Natural Science Foundation of ChinaProject(20123718110007)supported by the Specialized Research Fund for the Doctoral Program of Higher Education of China
文摘Surrounding rocks of weakly consolidated soft rock roadway show obvious strain softening and dilatancy effects after excavation. A damage coefficient concerning modulus attenuation was defined. Response models of stress and displacement of surrounding rock of soft rock roadway and analytical expressions to calculate plastic zones under different interior pressures and non-uniform original rock stresses were derived based on damage theories and a triple linear elastic-plastic strain softening model. Influence laws of dilatancy gradient on damage development, distributions of stresses and displacement in plastic region were analyzed. Interior pressure conditions to develop plastic region under different origin rock stresses were established and their influences on plastic region distribution were also discussed. The results show that the order of maximum principle stress is exchanged between ~0 and trr with the increase of interior pressure P0, which causes distributions of plastic zone and stress shift. Dilatancy effect which has great influences on the damage propagation and displacements in plastic region has little effect on the size of plastic region and stress responses. The conclusions provide a theoretical basis for a reasonable evaluation of stability and effective supporting of weakly consolidated soft rock roadway.
基金Financial support for this work, provided by the research fund of the State Key Laboratory of Coal Resources and Mine Safety of the China University of Mining & Technology (No.08kf11) is gratefully ac-knowledged
文摘In order to study the rules of distribution in a plastic zone of rocks, surrounding a roadway, affected by tectonic stress, we first analyzed the mechanics of a roadway affected by tectonic stress and derived a theoretical formula for the plastic zone of rocks surrounding a roadway. We also analyzed the distribution characteristics of the plastic zone under different levels of tectonic stress, vertical pressure, cohesion and friction angle of the surrounding rock. Secondly, we used numerical simulation to analyze the range and shape features of the plastic zone of rocks surrounding the roadway, given different tectonic stress levels. Finally we used a rock drilling detector to carry out field measurements on the broken state of rock surrounding the roadway at the –700 substation and channels in the Xinzhuang mine of the Shenhuo mining area. Given the measured ground stress, we analyzed the relationship between tectonic stress and the distribution of this plastic zone. Our results show that the range of the plastic zone at the top and bottom of the roadway increases with an increase in tectonic stress and this increase is especially obvious at the roadway corner.
基金Supported by the Projects of National Natural Science Foundation (51174196) the Program for New Century Excellent Talents in University (NCET-07-0519)
文摘Aiming to get the strata behavior and stability rules of surrounding rock of the main return airway of Yushujing Coal Mine, convergence deformation of two sides and force of U-shaped steel yieldable support and bolt were monitored, and deformation of surrounding rock and mechanical characteristics of support structure were timely obtained to guide the informa- tion construction and optimize supporting parameters in water-rich soft rock roadway. The field monitoring results indicate the following. (1) Convergence displacement of rock surface increases with time continuity and shows surrounding rock's intense theological behavior. The original support scheme cannot control the large deformation and strongly theological behavior; (2) Without backfilling, the U-shaped steel support begins to bear load after erecting for 4-7 days and increases rapidly in the first 30 days. The U-shaped steel support at the right shoulder and top of roadway bears a larger force and the left side and shoulder bears a smaller force; (3) The stress of bolt increasing over time and at the right shoulder of roadway has larger growth and value. The mechanism of rock deformation and the failure and strata behavior in water-rich soft rock roadway are revealed based on the results of the measured relaxation zone of surrounding rock, measured stresses, and the rock mechanics tests.
文摘The properties of broken rock before and after grouting reinforcement are studied. Testing results show that grouting can raise the residual strength of broken rock, and the broken rockness by grouting can keep the steady supporting capacity within a relatively large deformation range. Revealing of the characteristics of stage deformation and damage process comes to the conclusion that the supporting of soft rock roadway should be analyzed in a dynamic view, and the grouting should be delayed at a proper occasion. Based on the above, the stepwise reinforcement technology characterized by immediate shotcreting, timely bolting and delay grouting is put forward and illustrated with a successful engineering practice.