Introduced the coal and rock AE propagation rule,wave guide fixing technics onAE sensors,and AE forecasting coal and rock disaster on the scene and so on,The coaland rock AE propagation rule that follows the exponent ...Introduced the coal and rock AE propagation rule,wave guide fixing technics onAE sensors,and AE forecasting coal and rock disaster on the scene and so on,The coaland rock AE propagation rule that follows the exponent attenuation function on different AEfrequencies,different quality factors and different propagation distances were analyzedand deduced by theory,numerical simulation,and by actual experiment.Consequently,itwas deduced that the coal and rock AE propagation rule follows the exponent attenuationfunction.Based on the correlative theory of wave dynamics and AE sensor,the AE waveguide propagation mechanical model on the sensor fixing manner is found,and the relationsof displacement and speed and acceleration between the AE signal source and theAE signal receiving terminal are presented.The effect of the AE sensor fixing manners oncoal and rock surfaces,coal and rock bottoms and wave guides were studied by actualexperiment.For the results,the effect of the AE sensor fixing manner on wave guides isbetter than on coal and rock surfaces,and was equivalent to the fixing manner on coal androck bottoms.Based on the above study results,actual coal and rock dynamistic disasterswere successfully forecasted.展开更多
The electromagnetic radiation(EMR)monitoring and early warning technology has experienced decades of successful applications for worldwide coal and rock dynamic disasters,yet a fundamental model unifying physical mech...The electromagnetic radiation(EMR)monitoring and early warning technology has experienced decades of successful applications for worldwide coal and rock dynamic disasters,yet a fundamental model unifying physical mechanism and generation process for EMR is still lacking.The effective revealing of EMR's mechanism is crucial for dynamic disaster control and management.With this motive,a multi-scale experimental study was conducted in the earlier stage.At the micro-scale,the charge's existence and non-uniform distribution on rock's micro-surface were confirmed by atomic force microscope(AFM),and deduced the relationship with load changes.At the meso-scale,the time sequence synchronization and frequency domain consistency of EMR and micro-vibration(MV)in the rock fracture under load have been confirmed.Therefore,it is inferred that the vibration of the crack surface acts as the power source of rock fracture-induced EMR,and the original charge on the crack surface and the charge generated by the new crack surface are the electrical basis of EMR.Based on the above two experimental findings,this paper proposes a new mechanism of rock fracture-induced EMR defined as the electricity-vibration coupling mechanism,stating that,the vibrating charged crack generates the EMR.Subsequently,a generation model was constructed based on vibrating charged crack clusters to elucidate this mechanism.The experimental results demonstrated that the EMR waveform calculated by the model and measured by antenna exhibited good correspondence,thereby verifying the effectiveness of the constructed EMR model.The proposal of this new mechanism and the model further clarified the EMR's mechanism induced by rock fracture.Moreover,the inter-relationship among crack propagation,vibration,and EMR was developed by this model,which could be immensely beneficial in EMR-based identification and prediction of dynamic disasters in complex mining environments worldwide.展开更多
The electromagnetic radiation (EMR) signal collected by monitoring system during coal or rock dynamic disaster may be interferred easily by electromagnetic noises in mines. The noises have a direct influence on the ...The electromagnetic radiation (EMR) signal collected by monitoring system during coal or rock dynamic disaster may be interferred easily by electromagnetic noises in mines. The noises have a direct influence on the recognition and analysis of the EMR signal features during the disaster. With the aim of removing these noises, an ensemble empirical mode decomposition (EEMD) adaptive morphological filter was proposed. From the result of the simulation and the experiment, it is shown that the method can restrain the random noise and white Gaussian noise mixed with EMR signal effectively. The filter is highly useful for improving the robustness of the coal or rock dynamic disaster monitoring system.展开更多
Rock mass mechanics can be classified into engineering rock mass mechanics and disaster rock mass mechanics based on science and application.Their conception,object,scientific essence and application were elaborated.T...Rock mass mechanics can be classified into engineering rock mass mechanics and disaster rock mass mechanics based on science and application.Their conception,object,scientific essence and application were elaborated.The connotation,studying method and theoretical framework of disaster rock mass mechanics were described.Disaster rock mass mechanics is a strongly nonlinear discipline which is a strong tool to study natural and artificially-induced disasters.The rock mass system where disasters happen exhibits extremely spatial-temporal nonlinearity in the critically unstable state.Hence,the potentially effective prediction and forecasting of disasters depends on statistical analysis of highly probable events.The direction of efforts for predicting and forecasting disasters could be to find the quantitative or semi-quantitative relationship between physical and biological information and instability of rock mass system.展开更多
基金Supported by the Project of National Basic Research Program of China(973 Program)(2005CB221505)the Significant Project of National Natural Science Fund(50534080/E041503)the Project of Coal Mine Gas and Fire Hazard Prevention Major Lab in Henan Province(HKLGF200508)
文摘Introduced the coal and rock AE propagation rule,wave guide fixing technics onAE sensors,and AE forecasting coal and rock disaster on the scene and so on,The coaland rock AE propagation rule that follows the exponent attenuation function on different AEfrequencies,different quality factors and different propagation distances were analyzedand deduced by theory,numerical simulation,and by actual experiment.Consequently,itwas deduced that the coal and rock AE propagation rule follows the exponent attenuationfunction.Based on the correlative theory of wave dynamics and AE sensor,the AE waveguide propagation mechanical model on the sensor fixing manner is found,and the relationsof displacement and speed and acceleration between the AE signal source and theAE signal receiving terminal are presented.The effect of the AE sensor fixing manners oncoal and rock surfaces,coal and rock bottoms and wave guides were studied by actualexperiment.For the results,the effect of the AE sensor fixing manner on wave guides isbetter than on coal and rock surfaces,and was equivalent to the fixing manner on coal androck bottoms.Based on the above study results,actual coal and rock dynamistic disasterswere successfully forecasted.
基金financially supported by the National Natural Science Foundation of China(Nos.51634001,52327804,52174162,52404256,and 52374180)the State Key Research Development Program of China(No.2016YFC0801408)the Fundamental Research Funds for the Central Universities(No.29-2023-025)。
文摘The electromagnetic radiation(EMR)monitoring and early warning technology has experienced decades of successful applications for worldwide coal and rock dynamic disasters,yet a fundamental model unifying physical mechanism and generation process for EMR is still lacking.The effective revealing of EMR's mechanism is crucial for dynamic disaster control and management.With this motive,a multi-scale experimental study was conducted in the earlier stage.At the micro-scale,the charge's existence and non-uniform distribution on rock's micro-surface were confirmed by atomic force microscope(AFM),and deduced the relationship with load changes.At the meso-scale,the time sequence synchronization and frequency domain consistency of EMR and micro-vibration(MV)in the rock fracture under load have been confirmed.Therefore,it is inferred that the vibration of the crack surface acts as the power source of rock fracture-induced EMR,and the original charge on the crack surface and the charge generated by the new crack surface are the electrical basis of EMR.Based on the above two experimental findings,this paper proposes a new mechanism of rock fracture-induced EMR defined as the electricity-vibration coupling mechanism,stating that,the vibrating charged crack generates the EMR.Subsequently,a generation model was constructed based on vibrating charged crack clusters to elucidate this mechanism.The experimental results demonstrated that the EMR waveform calculated by the model and measured by antenna exhibited good correspondence,thereby verifying the effectiveness of the constructed EMR model.The proposal of this new mechanism and the model further clarified the EMR's mechanism induced by rock fracture.Moreover,the inter-relationship among crack propagation,vibration,and EMR was developed by this model,which could be immensely beneficial in EMR-based identification and prediction of dynamic disasters in complex mining environments worldwide.
文摘The electromagnetic radiation (EMR) signal collected by monitoring system during coal or rock dynamic disaster may be interferred easily by electromagnetic noises in mines. The noises have a direct influence on the recognition and analysis of the EMR signal features during the disaster. With the aim of removing these noises, an ensemble empirical mode decomposition (EEMD) adaptive morphological filter was proposed. From the result of the simulation and the experiment, it is shown that the method can restrain the random noise and white Gaussian noise mixed with EMR signal effectively. The filter is highly useful for improving the robustness of the coal or rock dynamic disaster monitoring system.
基金supported by the National Natural Science Foundation of China(Grant No.52122405)Shanxi major research program for science and technology(Grant No.202101060301024).
文摘Rock mass mechanics can be classified into engineering rock mass mechanics and disaster rock mass mechanics based on science and application.Their conception,object,scientific essence and application were elaborated.The connotation,studying method and theoretical framework of disaster rock mass mechanics were described.Disaster rock mass mechanics is a strongly nonlinear discipline which is a strong tool to study natural and artificially-induced disasters.The rock mass system where disasters happen exhibits extremely spatial-temporal nonlinearity in the critically unstable state.Hence,the potentially effective prediction and forecasting of disasters depends on statistical analysis of highly probable events.The direction of efforts for predicting and forecasting disasters could be to find the quantitative or semi-quantitative relationship between physical and biological information and instability of rock mass system.