期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
A modified failure criterion for transversely isotropic rocks 被引量:17
1
作者 Omid Saeidi Vamegh Rasouli +2 位作者 Rashid Geranmayeh Vaneghi Raoof Gholami Seyed Rahman Torabi 《Geoscience Frontiers》 SCIE CAS CSCD 2014年第2期215-225,共11页
A modified failure criterion is proposed to determine the strength of transversely isotropic rocks. Me-chanical properties of some metamorphic and sedimentary rocks including gneiss, slate, marble, schist, shale, sand... A modified failure criterion is proposed to determine the strength of transversely isotropic rocks. Me-chanical properties of some metamorphic and sedimentary rocks including gneiss, slate, marble, schist, shale, sandstone and limestone, which show transversely isotropic behavior, were taken into consider-ation. Afterward, introduced triaxial rock strength criterion was modified for transversely isotropic rocks. Through modification process an index was obtained that can be considered as a strength reduction parameter due to rock strength anisotropy. Comparison of the parameter with previous anisotropy in-dexes in literature showed reasonable results for the studied rock samples. The modified criterion was compared to modified Hoek-Brown and Ramamurthy criteria for different transversely isotropic rocks. It can be concluded that the modified failure criterion proposed in this study can be used for predicting the strength of transversely isotropic rocks. 展开更多
关键词 Transversely isotropic rock strength anisotropy failure criterion Triaxial test
下载PDF
Mechanical properties and failure characteristics of fractured sandstone with grouting and anchorage 被引量:9
2
作者 Zong Yijiang Han Lijun +1 位作者 Qu Tao Yang Shengqi 《International Journal of Mining Science and Technology》 SCIE EI 2014年第2期165-170,共6页
Based on uniaxial compression experimental results on fractured sandstone with grouting and anchorage, we studied the strength and deformation properties, the failure model, crack formation and evolution laws of fract... Based on uniaxial compression experimental results on fractured sandstone with grouting and anchorage, we studied the strength and deformation properties, the failure model, crack formation and evolution laws of fractured sandstone under different conditions of anchorage. The experimental results show that the strength and elastic modulus of fractured sandstone with different fracture angles are significantly lower than those of intact sandstone. Compared with the fractured samples without anchorage,the peak strength, residual strength, peak and ultimate axial strain of fractured sandstone under different anchorage increase by 64.5–320.0%, 62.8–493.0%, and 31.6–181.4%, respectively. The number of bolts and degree of pre-stress has certain effects on the peak strength and failure model of fractured sandstone. The peak strength of fractured sandstone under different anchorage increases to some extent, and the failure model of fractured sandstone also transforms from tensile failure to tensile–shear mixed failure with the number of bolts. The pre-stress can restrain the formation and evolution process of tensile cracks, delay the failure process of fractured sandstone under anchorage and impel the transformation of failure model from brittle failure to plastic failure. 展开更多
关键词 Fractured rock mass Anchorage properties Peak strength Crack propagation failure characteristics
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部