Engineering geological and hydro-geological characteristics of foundation rock and surrounding rock mass are the main factors that affect the stability of underground engineering. This paper presents the concept of mu...Engineering geological and hydro-geological characteristics of foundation rock and surrounding rock mass are the main factors that affect the stability of underground engineering. This paper presents the concept of multiscale hierarchical digital rock mass models to describe the rock mass, including its structures in different scales and corresponding scale dependence. Four scales including regional scale,engineering scale, laboratory scale and microscale are determined, and the corresponding scaledependent geological structures and their characterization methods are provided. Image analysis and processing method, geostatistics and Monte Carlo simulation technique are used to establish the multiscale hierarchical digital rock mass models, in which the main micro-and macro-structures of rock mass in different geological units and scales are reflected and connected. A computer code is developed for numerically analyzing the strength, fracture behavior and hydraulic conductivity of rock mass using the multiscale hierarchical digital models. Using the models and methods provided in this paper, the geological information of rock mass in different geological units and scales can be considered sufficiently,and the influence of downscale characteristics(such as meso-scale) on the upscale characteristics(such as engineering scale) can be calculated by considering the discrete geological structures in the downscale model as equivalent continuous media in the upscale model. Thus the mechanical and hydraulic properties of rock mass may be evaluated rationally and precisely. The multiscale hierarchical digital rock mass models and the corresponding methods proposed in this paper provide a unified and simple solution for determining the mechanical and hydraulic properties of rock mass in different scales.展开更多
The evaluation of engineering rock mass quality is fundamental work for the engineering activities of rock mass.The increasing scale of rock mass engineering necessitates higher intelligence,timeliness,and accuracy in...The evaluation of engineering rock mass quality is fundamental work for the engineering activities of rock mass.The increasing scale of rock mass engineering necessitates higher intelligence,timeliness,and accuracy in engineering rock mass quality evaluation.As the core aspects of engineering rock mass quality evaluation,the structural characteristics,mechanical characteristics,and quality classification of rock mass have been innovated in recent years.The non-contact measurement technology for rock mass structure and rapid interpretation of rock mass structure information enables the intelligent extraction and analysis of rock mass structure parameters.The modular backpack laboratory system of rock mechanics provides an effective means to acquire rock mechanical parameters on-site conveniently.The theory of statistical mechanics of rock mass(SMRM)integrates various factors such as the rock mass properties,geological environment,and engineering disturbance,providing a theoretical basis for accurately evaluating the weakening and anisotropy of rock mass.The cloud computing platform established based on SMRM can provide technical support for the rapid calculation of rock mass parameters and instant evaluation of the rock mass quality.The development of intelligent evaluation method and technology is altering the conventional technical state of qualitative and semi-quantitative evaluation of engineering rock mass quality,supporting the realization of rock mass engineering construction with intellectualization and informatization.展开更多
基金the Outstanding Youth Science Foundation of National Natural Science Foundation (Grant No. 51522903)the National Key Research and Development Plan (Grant No. 2016YFC0501104)+1 种基金the National Natural Science Foundation of China (Grant Nos. U1361103, 51479094 and 51379104)the Open Research Fund Program of the State Key Laboratory of Hydroscience and Engineering,Tsinghua University (Grant Nos. 2015-KY-04, 2016-KY-02 and 2016KY-05)
文摘Engineering geological and hydro-geological characteristics of foundation rock and surrounding rock mass are the main factors that affect the stability of underground engineering. This paper presents the concept of multiscale hierarchical digital rock mass models to describe the rock mass, including its structures in different scales and corresponding scale dependence. Four scales including regional scale,engineering scale, laboratory scale and microscale are determined, and the corresponding scaledependent geological structures and their characterization methods are provided. Image analysis and processing method, geostatistics and Monte Carlo simulation technique are used to establish the multiscale hierarchical digital rock mass models, in which the main micro-and macro-structures of rock mass in different geological units and scales are reflected and connected. A computer code is developed for numerically analyzing the strength, fracture behavior and hydraulic conductivity of rock mass using the multiscale hierarchical digital models. Using the models and methods provided in this paper, the geological information of rock mass in different geological units and scales can be considered sufficiently,and the influence of downscale characteristics(such as meso-scale) on the upscale characteristics(such as engineering scale) can be calculated by considering the discrete geological structures in the downscale model as equivalent continuous media in the upscale model. Thus the mechanical and hydraulic properties of rock mass may be evaluated rationally and precisely. The multiscale hierarchical digital rock mass models and the corresponding methods proposed in this paper provide a unified and simple solution for determining the mechanical and hydraulic properties of rock mass in different scales.
基金the National Natural Science Foundation of China(Grant Nos.41831290 and 42177142)the Key R&D Project from Zhejiang Province,China(Grant No.2020C03092)the Key Research and Development Program of Shaanxi(Grant No.2023-YBSF-486).
文摘The evaluation of engineering rock mass quality is fundamental work for the engineering activities of rock mass.The increasing scale of rock mass engineering necessitates higher intelligence,timeliness,and accuracy in engineering rock mass quality evaluation.As the core aspects of engineering rock mass quality evaluation,the structural characteristics,mechanical characteristics,and quality classification of rock mass have been innovated in recent years.The non-contact measurement technology for rock mass structure and rapid interpretation of rock mass structure information enables the intelligent extraction and analysis of rock mass structure parameters.The modular backpack laboratory system of rock mechanics provides an effective means to acquire rock mechanical parameters on-site conveniently.The theory of statistical mechanics of rock mass(SMRM)integrates various factors such as the rock mass properties,geological environment,and engineering disturbance,providing a theoretical basis for accurately evaluating the weakening and anisotropy of rock mass.The cloud computing platform established based on SMRM can provide technical support for the rapid calculation of rock mass parameters and instant evaluation of the rock mass quality.The development of intelligent evaluation method and technology is altering the conventional technical state of qualitative and semi-quantitative evaluation of engineering rock mass quality,supporting the realization of rock mass engineering construction with intellectualization and informatization.