This study aims at the probabilistic assessment of tunnel convergence considering the spatial variability in rock mass properties. The method of interpolated autocorrelation combined with finite difference analysis is...This study aims at the probabilistic assessment of tunnel convergence considering the spatial variability in rock mass properties. The method of interpolated autocorrelation combined with finite difference analysis is adopted to model the spatial variability of rock mass properties. An iterative procedure using the first-order reliability method(FORM) and response surface method(RSM) is employed to compute the reliability index and its corresponding design point. The results indicate that the spatial variability considerably affects the computed reliability index. The probability of failure could be noticeably overestimated in the case where the spatial variability is neglected. The vertical scale of fluctuation has a much higher effect on the probabilistic result with respect to the tunnel convergence than the horizontal scale of fluctuation. And the influence of different spacing of control points on the computational accuracy is investigated.展开更多
The zonal disintegration phenomenon (ZDP) is a typical phenomenon in deep block rock masses. In order to investigate the mechanism of ZDP, an improved non-linear Hock-Brown strength criterion and a bi-linear constit...The zonal disintegration phenomenon (ZDP) is a typical phenomenon in deep block rock masses. In order to investigate the mechanism of ZDP, an improved non-linear Hock-Brown strength criterion and a bi-linear constitutive model of rock mass were used to analyze the elasto-plastic stress field of the enclosing rock mass around a deep round tunnel. The radius of the plastic region and stress of the enclosing rock mass were obtained by introducing dimensionless parameters of radial distance. The results show that tunneling in deep rock mass causes a maximum stress zone to appear in the vicinity of the boundary of the elastic and the plastic zone in the surrounding rock mass. Under the compression of a large tangential force and a small radial force, the rock mass in the maximum stress zone was in an approximate uniaxial loading state, which could lead to a split failure in the rock mass.展开更多
Zonal disintegration is a typical static phenomenon of deep rock masses. It has been defined as alternating regions of fractured and relatively intact rock mass that appear around or in front of the working stope duri...Zonal disintegration is a typical static phenomenon of deep rock masses. It has been defined as alternating regions of fractured and relatively intact rock mass that appear around or in front of the working stope during excavation of a deep tunnel. Zonal disintegration phenomenon was successfully demonstrated in the laboratory with 3D tests on analogous gypsum models, two circular cracked zones were observed in the test. The linear Mohr-Coulomb yield criterion was used with a constitutive model that showed linear softening and ideal residual plastic to analyze the elasto-plastic field of the enclosing rock mass around a deep tunnel. The results show that tunneling causes a maximum stress zone to appear between an elastic and plastic zone in the surrounding rock. The zonal disintegration phenomenon is analyzed by considering the stress-strain state of the rock mass in the vicinity of the maximum stress zone. Creep instability failure of the rock due to the development of the plastic zone, and transfer of the maximum stress zone into the rock mass, are the cause of zonal disintegration. An analytical criterion for the critical depth at which zonal disintegration can occur is derived. This depth depends mainly on the character and stress concentration coefficient of the rock mass.展开更多
The objective of this work is to obtain the seismic safety coefficient and fracture surface and proceed with the seismic safety evaluation for the rock mass or soil mass surrounding a tunnel,and the limitation of eval...The objective of this work is to obtain the seismic safety coefficient and fracture surface and proceed with the seismic safety evaluation for the rock mass or soil mass surrounding a tunnel,and the limitation of evaluating seismic stability is considered using the pseudo-static strength reduction.By using the finite element software ANSYS and the strength reduction method,new methods of seismic safety evaluation for the rock mass or soil mass surrounding a tunnel are put forward,such as the dynamic finite element static shear strength reduction method and dynamic finite element shear strength reduction method.In order to prove the feasibility of the proposed methods,the results of numerical examples are compared with that of the pseudo-static strength reduction method.The results show that 1) the two methods are both feasible,and the plastic zone first appears near the bottom corners; 2) the safety factor of new method Ⅱ is smaller than that of new method I but generally,and the difference is very small.Therefore,in order to ensure the safety of the structure,two new methods are proposed to evaluate the seismic stability of the rock mass or soil mass surrounding a tunnel.A theoretical basis is provided for the seismic stability of the rock mass or soil mass and the lining surrounding a tunnel and also provided for the engineering application.展开更多
Based on the similarity theory, taking the horseshoe, city-gate and round linings as examples, the value and distribution regularities of normal frost heaving pressures (hereinafter as frost heaving pressures) in tu...Based on the similarity theory, taking the horseshoe, city-gate and round linings as examples, the value and distribution regularities of normal frost heaving pressures (hereinafter as frost heaving pressures) in tunnels excavated in fractured rock mass in cold regions under different constraints and freezing depths were studied by a test model. It was found that the larger the frozen depth, the larger the frost heaving pressure, and the stronger the top constraint, the larger the frost heaving pressure. For the horseshoe lining and city-gate lining, the top constraint has a greater effect on the frost heaving pressures on the arch and the inverted arch. For the round lining, the influences of the top constraint on the frost heaving pressure in all linings are almost the same. The frost heaving pressure is maximum on the city-gate lining and minimal on the round lining. The largest frost heaving pressure all occur near the foot of the inverted arch for the three kinds of lining. Thus, the test data basically coincide with the observed in situ data.展开更多
This paper presents two case studies where the rock mass modulus and in situ stress are estimated from the monitoring data obtained during the construction of underground excavations in Sydney,Australia.The case studi...This paper presents two case studies where the rock mass modulus and in situ stress are estimated from the monitoring data obtained during the construction of underground excavations in Sydney,Australia.The case studies comprise the widening of existing twin road tunnels within Hawkesbury sandstone and the excavation of a large cavern within Ashfield shale.While back-analysis from detailed systematic monitoring has been previously published,this paper presents a relatively simple methodology to derive rock mass modulus and in situ stress from the relatively simple displacement data routinely recorded during tunnelling.展开更多
The main purpose of this study is to classify the rock mass quality by using rock mass quality (Q) and Rock Mass Rating (RMR) systems along headrace tunnel of small hydropower in Mansehra District, Khyber Pakhtunkhwa....The main purpose of this study is to classify the rock mass quality by using rock mass quality (Q) and Rock Mass Rating (RMR) systems along headrace tunnel of small hydropower in Mansehra District, Khyber Pakhtunkhwa. Geological field work was carried out to determine the orientation, spacing, aperture, roughness and alteration of discontinuities of rock mass. The quality of rock mass along the tunnel route is classified as good to very poor quality by Q system, while very good to very poor by RMR classification system. The relatively good rock conditions are acquired via RMR values that are attributed to ground water conditions, joint spacing, RQD and favorable orientation of discontinuities with respect to the tunnel drive. The petrographic studies revealed that study area is mainly comprised of five major geological rock units namely quartz mica schist (QMS), garnet mica schist (GMS), garnet bearing quartz mica schist (G-QMS), calcareous schist (CS), marble (M). The collected samples of quartz mica schist, marble and garnet bearing quartz mica schist are fine to medium grained, compact and are cross cut by few discontinuities having greater spacing. Therefore, these rocks have greater average RQD, Q values, RMR ratings as compared to garnet mica schist and calcareous schist.展开更多
Fast methods to solve the unloading problem of a cylindrical cavity or tunnel excavated in elasto-perfectly plastic, elasto-brittle or strain-softening materials under a hydrostatic stress feld can be derived based on...Fast methods to solve the unloading problem of a cylindrical cavity or tunnel excavated in elasto-perfectly plastic, elasto-brittle or strain-softening materials under a hydrostatic stress feld can be derived based on the self-similarity of the solution. As a consequence, they only apply when the rock mass is homogeneous and so exclude many cases of practical interest. We describe a robust and fast numerical technique that solves the tunnel unloading problem and estimates the ground reaction curve for a cylindrical cavity excavated in a rock mass with properties depending on the radial coordinate, where the solution is no longer self-similar. The solution is based on a continuation-like approach(associated with the unloading and with the incremental formulation of the elasto-plastic behavior), fnite element spatial discretization and a combination of explicit sub-stepping schemes and implicit techniques to integrate the constitutive law, so as to tackle the diffculties associated with both strong strain-softening and elasto-brittle behaviors. The developed algorithm is used for two practical ground reaction curve computation applications. The frst application refers to a tunnel surrounded by an aureole of material damaged by blasting and the second to a tunnel surrounded by a ring-like zone of reinforced(rock-bolted) material.展开更多
A12.24km long tunnel between Maroshi and Ruparel College is being excavated by tunnel boring machine(TBM)to improve the water supply system of Greater Mumbai,India.In this paper,attempt has been made to establish the ...A12.24km long tunnel between Maroshi and Ruparel College is being excavated by tunnel boring machine(TBM)to improve the water supply system of Greater Mumbai,India.In this paper,attempt has been made to establish the relationship between various litho-units of Deccan traps,stability of tunnel and TBM performances during the construction of5.83km long tunnel between Maroshi and Vakola.The Maroshi–Vakola tunnel passes under the Mumbai Airport and crosses both runways with an overburden cover of around70m.The tunneling work was carried out without disturbance to the ground.The rock types encountered during excavation arefine compacted basalt,porphyritic basalt,amygdaloidal basalt pyroclastic rocks with layers of red boles and intertrappean beds consisting of various types of shales Relations between rock mass properties,physico-mechanical properties,TBM specifications and the cor responding TBM performance were established.A number of support systems installed in the tunne during excavation were also discussed.The aim of this paper is to establish,with appropriate accuracy the nature of subsurface rock mass condition and to study how it will react to or behave during under ground excavation by TBM.The experiences gained from this project will increase the ability to cope with unexpected ground conditions during tunneling using TBM.展开更多
This study illustrates the classification of the rock mass and evaluation of rock squeezing, rock burst potential, deformation modulus along the proposed tunnel alignment of small hydropower in Swat Valley, Khyber Pak...This study illustrates the classification of the rock mass and evaluation of rock squeezing, rock burst potential, deformation modulus along the proposed tunnel alignment of small hydropower in Swat Valley, Khyber Pakhtunkhwa (KP), Pakistan. The field and laboratory studies were conducted to classify the rock mass by using geomechanical classification systems i.e. Rock Mass Rating (RMR), tunneling quality index (Q), Rock Mass Index (RMi). The empirical relations classified the ground as non-squeezing and minor to non-squeezing conditions, respectively. Whereas, other methods depict minor to medium bursting potential along chainage 1+000 to 4+000 m, while results along chainage 2+400 - 2+800 m present medium to high bursting potential. Furthermore, numerical analyses were carried out by RS3 for elastic and plastic conditions in order to assess the total displacement of each section in unsupported and supported conditions. The results gave maximum displacement along chainage 2+400 - 2+800 m (19.2 mm in unsupported and 16mm in supported condition) and minimum displacement along chainage 0+876 - 1+000 m (1.4 mm in unsupported and 1.3 mm in supported condition). Hence, the estimated support by empirical methods has been optimized by using numerical analyses for the stability of rock mass along the tunnel.展开更多
This paper presents the results of ongoing research carried out by the author exploring methods to provide a more robust estimate of rock mass properties specifically for use in tunnel design.Data from various large-s...This paper presents the results of ongoing research carried out by the author exploring methods to provide a more robust estimate of rock mass properties specifically for use in tunnel design.Data from various large-scale rock mass failures are introduced,including coal pillars.The damage-initiation,spalling-limit approach is compared to the coal pillar database.New comparisons of estimating the geological strength index(GSI)and relationships to estimate the Hoek-Brown failure criterion parameters,mb,s and a,are presented.展开更多
The pivotal aim of this study is to evaluate the rock mass characterization and deformation modulus. It is vital for rock mass classification to investigate important parameters of discontinuities. Therefore, Rock Mas...The pivotal aim of this study is to evaluate the rock mass characterization and deformation modulus. It is vital for rock mass classification to investigate important parameters of discontinuities. Therefore, Rock Mass Rating (RMR) and Tunneling quality index (Q) classification systems are applied to analyze 22 segments along proposed tunnel routes for hydropower in Kandiah valley, Khyber Pakhtunkhwa, Pakistan. RMR revealed the range of fair to good quality rocks, whereas Q yielded poor to fair quality rocks for investigated segments of the rock mass. Besides, Em values were acquired by empirical equations and computer-aided program RocLab, and both methods presented almost similar variation trend of their results. Hence, the correlations of Em with Q and RMR were carried out with higher values of the regression coefficient. This study has scientific significance to initially understand the rock mass conditions of Kandiah valley.展开更多
Mass movements are very common problems in the eastern Black Sea region of Turkey due to its climate conditions, geological, and geomorphological characteristics. High slope angle, weathering, dense rainfalls, and ant...Mass movements are very common problems in the eastern Black Sea region of Turkey due to its climate conditions, geological, and geomorphological characteristics. High slope angle, weathering, dense rainfalls, and anthropogenic impacts are generally reported as the most important triggering factors in the region. Following the portal slope excavations in the entrance section of Cankurtaran tunnel, located in the region, where the highly weathered andesitic tuff crops out, a circular toe failure occurred. The main target of the present study is to investigate the causes and occurrence mechanism of this failure and to determine the feasible remedial measures against it using finite element method(FEM) in four stages. These stages are slope stability analyses for pre-and postexcavation cases, and remediation design assessments for slope and tunnel. The results of the FEM-SSR analyses indicated that the insufficient initial support design and weathering of the andesitic tuffs are the main factors that caused the portal failure. After installing a rock retaining wall with jet grout columns and reinforced slope benching applications, the factor of safety increased from 0.83 to 2.80. In addition toslope stability evaluation, the Rock Mass Rating(RMR), Rock Mass Quality(Q) and New Austrian Tunneling Method(NATM) systems were also utilized as empirical methods to characterize the tunnel ground and to determine the tunnel support design. The performance of the suggested empirical support design, induced stress distributions and deformations were analyzed by means of numerical modelling. Finally, it was concluded that the recommended stabilization technique was essential for the dynamic long-term stability and prevents the effects of failure. Additionally, the FEM method gives useful and reasonably reliable results in evaluating the stability of cut slopes and tunnels excavated both in continuous and discontinuous rock masses.展开更多
With the scale and cost of geotechnical engineering projects increasing rapidly over the past few decades,there is a clear need for the careful consideration of calculated risks in design.While risk is typically dealt...With the scale and cost of geotechnical engineering projects increasing rapidly over the past few decades,there is a clear need for the careful consideration of calculated risks in design.While risk is typically dealt with subjectively through the use of conservative design parameters,with the advent of reliability-based methods,this no longer needs to be the case.Instead,a quantitative risk approach can be considered that incorporates uncertainty in ground conditions directly into the design process to determine the variable ground response and support loads.This allows for the optimization of support on the basis of both worker safety and economic risk.This paper presents the application of such an approach to review the design of the initial lining system along a section of the Driskos twin tunnels as part of the Egnatia Odos highway in northern Greece.Along this section of tunnel,weak rock masses were encountered as well as high in situ stress conditions,which led to excessive deformations and failure of the as built temporary support.Monitoring data were used to validate the rock mass parameters selected in this area and a risk approach was used to determine,in hindsight,the most appropriate support category with respect to the cost of installation and expected cost of failure.Different construction sequences were also considered in the context of both convenience and risk cost.展开更多
基金financially supported by the National Natural Science Foundation of China(Nos.41772287 and 41502268)the Research Program of Zhejiang Provincial Communication Department(No.2016-2-16)
文摘This study aims at the probabilistic assessment of tunnel convergence considering the spatial variability in rock mass properties. The method of interpolated autocorrelation combined with finite difference analysis is adopted to model the spatial variability of rock mass properties. An iterative procedure using the first-order reliability method(FORM) and response surface method(RSM) is employed to compute the reliability index and its corresponding design point. The results indicate that the spatial variability considerably affects the computed reliability index. The probability of failure could be noticeably overestimated in the case where the spatial variability is neglected. The vertical scale of fluctuation has a much higher effect on the probabilistic result with respect to the tunnel convergence than the horizontal scale of fluctuation. And the influence of different spacing of control points on the computational accuracy is investigated.
基金Projects 50525825, 50490275 and 90815010 supported by the National Natural Science Foundation of China2009CB724608 by the National BasicResearch Program of China
文摘The zonal disintegration phenomenon (ZDP) is a typical phenomenon in deep block rock masses. In order to investigate the mechanism of ZDP, an improved non-linear Hock-Brown strength criterion and a bi-linear constitutive model of rock mass were used to analyze the elasto-plastic stress field of the enclosing rock mass around a deep round tunnel. The radius of the plastic region and stress of the enclosing rock mass were obtained by introducing dimensionless parameters of radial distance. The results show that tunneling in deep rock mass causes a maximum stress zone to appear in the vicinity of the boundary of the elastic and the plastic zone in the surrounding rock mass. Under the compression of a large tangential force and a small radial force, the rock mass in the maximum stress zone was in an approximate uniaxial loading state, which could lead to a split failure in the rock mass.
基金Projects 50490275 and 50525825 supported by the National Natural Science Foundation of China
文摘Zonal disintegration is a typical static phenomenon of deep rock masses. It has been defined as alternating regions of fractured and relatively intact rock mass that appear around or in front of the working stope during excavation of a deep tunnel. Zonal disintegration phenomenon was successfully demonstrated in the laboratory with 3D tests on analogous gypsum models, two circular cracked zones were observed in the test. The linear Mohr-Coulomb yield criterion was used with a constitutive model that showed linear softening and ideal residual plastic to analyze the elasto-plastic field of the enclosing rock mass around a deep tunnel. The results show that tunneling causes a maximum stress zone to appear between an elastic and plastic zone in the surrounding rock. The zonal disintegration phenomenon is analyzed by considering the stress-strain state of the rock mass in the vicinity of the maximum stress zone. Creep instability failure of the rock due to the development of the plastic zone, and transfer of the maximum stress zone into the rock mass, are the cause of zonal disintegration. An analytical criterion for the critical depth at which zonal disintegration can occur is derived. This depth depends mainly on the character and stress concentration coefficient of the rock mass.
基金Project(2011CB013600) supported by State Key Program for Basic Research of ChinaProject(20136201110003) supported by the Education Ministry Doctoral Tutor Foundation of China+1 种基金Project(51368039) supported by the National Natural Science Foundation of ChinaProject(2013-4-94) supported by the Program of Science and Technology Research in Lanzhou City,China
文摘The objective of this work is to obtain the seismic safety coefficient and fracture surface and proceed with the seismic safety evaluation for the rock mass or soil mass surrounding a tunnel,and the limitation of evaluating seismic stability is considered using the pseudo-static strength reduction.By using the finite element software ANSYS and the strength reduction method,new methods of seismic safety evaluation for the rock mass or soil mass surrounding a tunnel are put forward,such as the dynamic finite element static shear strength reduction method and dynamic finite element shear strength reduction method.In order to prove the feasibility of the proposed methods,the results of numerical examples are compared with that of the pseudo-static strength reduction method.The results show that 1) the two methods are both feasible,and the plastic zone first appears near the bottom corners; 2) the safety factor of new method Ⅱ is smaller than that of new method I but generally,and the difference is very small.Therefore,in order to ensure the safety of the structure,two new methods are proposed to evaluate the seismic stability of the rock mass or soil mass surrounding a tunnel.A theoretical basis is provided for the seismic stability of the rock mass or soil mass and the lining surrounding a tunnel and also provided for the engineering application.
文摘Based on the similarity theory, taking the horseshoe, city-gate and round linings as examples, the value and distribution regularities of normal frost heaving pressures (hereinafter as frost heaving pressures) in tunnels excavated in fractured rock mass in cold regions under different constraints and freezing depths were studied by a test model. It was found that the larger the frozen depth, the larger the frost heaving pressure, and the stronger the top constraint, the larger the frost heaving pressure. For the horseshoe lining and city-gate lining, the top constraint has a greater effect on the frost heaving pressures on the arch and the inverted arch. For the round lining, the influences of the top constraint on the frost heaving pressure in all linings are almost the same. The frost heaving pressure is maximum on the city-gate lining and minimal on the round lining. The largest frost heaving pressure all occur near the foot of the inverted arch for the three kinds of lining. Thus, the test data basically coincide with the observed in situ data.
文摘This paper presents two case studies where the rock mass modulus and in situ stress are estimated from the monitoring data obtained during the construction of underground excavations in Sydney,Australia.The case studies comprise the widening of existing twin road tunnels within Hawkesbury sandstone and the excavation of a large cavern within Ashfield shale.While back-analysis from detailed systematic monitoring has been previously published,this paper presents a relatively simple methodology to derive rock mass modulus and in situ stress from the relatively simple displacement data routinely recorded during tunnelling.
文摘The main purpose of this study is to classify the rock mass quality by using rock mass quality (Q) and Rock Mass Rating (RMR) systems along headrace tunnel of small hydropower in Mansehra District, Khyber Pakhtunkhwa. Geological field work was carried out to determine the orientation, spacing, aperture, roughness and alteration of discontinuities of rock mass. The quality of rock mass along the tunnel route is classified as good to very poor quality by Q system, while very good to very poor by RMR classification system. The relatively good rock conditions are acquired via RMR values that are attributed to ground water conditions, joint spacing, RQD and favorable orientation of discontinuities with respect to the tunnel drive. The petrographic studies revealed that study area is mainly comprised of five major geological rock units namely quartz mica schist (QMS), garnet mica schist (GMS), garnet bearing quartz mica schist (G-QMS), calcareous schist (CS), marble (M). The collected samples of quartz mica schist, marble and garnet bearing quartz mica schist are fine to medium grained, compact and are cross cut by few discontinuities having greater spacing. Therefore, these rocks have greater average RQD, Q values, RMR ratings as compared to garnet mica schist and calcareous schist.
基金the Spanish Ministry of Science and Technology for fnancial support awarded under Contract Reference Numbers BIA2009-09673 and MTM2010-21235-C02-02
文摘Fast methods to solve the unloading problem of a cylindrical cavity or tunnel excavated in elasto-perfectly plastic, elasto-brittle or strain-softening materials under a hydrostatic stress feld can be derived based on the self-similarity of the solution. As a consequence, they only apply when the rock mass is homogeneous and so exclude many cases of practical interest. We describe a robust and fast numerical technique that solves the tunnel unloading problem and estimates the ground reaction curve for a cylindrical cavity excavated in a rock mass with properties depending on the radial coordinate, where the solution is no longer self-similar. The solution is based on a continuation-like approach(associated with the unloading and with the incremental formulation of the elasto-plastic behavior), fnite element spatial discretization and a combination of explicit sub-stepping schemes and implicit techniques to integrate the constitutive law, so as to tackle the diffculties associated with both strong strain-softening and elasto-brittle behaviors. The developed algorithm is used for two practical ground reaction curve computation applications. The frst application refers to a tunnel surrounded by an aureole of material damaged by blasting and the second to a tunnel surrounded by a ring-like zone of reinforced(rock-bolted) material.
基金a part of the project "Universities Natural Science Research Project in Anhui Province" (KJ2011Z375)supported by Department of Education of Anhui Province
文摘A12.24km long tunnel between Maroshi and Ruparel College is being excavated by tunnel boring machine(TBM)to improve the water supply system of Greater Mumbai,India.In this paper,attempt has been made to establish the relationship between various litho-units of Deccan traps,stability of tunnel and TBM performances during the construction of5.83km long tunnel between Maroshi and Vakola.The Maroshi–Vakola tunnel passes under the Mumbai Airport and crosses both runways with an overburden cover of around70m.The tunneling work was carried out without disturbance to the ground.The rock types encountered during excavation arefine compacted basalt,porphyritic basalt,amygdaloidal basalt pyroclastic rocks with layers of red boles and intertrappean beds consisting of various types of shales Relations between rock mass properties,physico-mechanical properties,TBM specifications and the cor responding TBM performance were established.A number of support systems installed in the tunne during excavation were also discussed.The aim of this paper is to establish,with appropriate accuracy the nature of subsurface rock mass condition and to study how it will react to or behave during under ground excavation by TBM.The experiences gained from this project will increase the ability to cope with unexpected ground conditions during tunneling using TBM.
文摘This study illustrates the classification of the rock mass and evaluation of rock squeezing, rock burst potential, deformation modulus along the proposed tunnel alignment of small hydropower in Swat Valley, Khyber Pakhtunkhwa (KP), Pakistan. The field and laboratory studies were conducted to classify the rock mass by using geomechanical classification systems i.e. Rock Mass Rating (RMR), tunneling quality index (Q), Rock Mass Index (RMi). The empirical relations classified the ground as non-squeezing and minor to non-squeezing conditions, respectively. Whereas, other methods depict minor to medium bursting potential along chainage 1+000 to 4+000 m, while results along chainage 2+400 - 2+800 m present medium to high bursting potential. Furthermore, numerical analyses were carried out by RS3 for elastic and plastic conditions in order to assess the total displacement of each section in unsupported and supported conditions. The results gave maximum displacement along chainage 2+400 - 2+800 m (19.2 mm in unsupported and 16mm in supported condition) and minimum displacement along chainage 0+876 - 1+000 m (1.4 mm in unsupported and 1.3 mm in supported condition). Hence, the estimated support by empirical methods has been optimized by using numerical analyses for the stability of rock mass along the tunnel.
文摘This paper presents the results of ongoing research carried out by the author exploring methods to provide a more robust estimate of rock mass properties specifically for use in tunnel design.Data from various large-scale rock mass failures are introduced,including coal pillars.The damage-initiation,spalling-limit approach is compared to the coal pillar database.New comparisons of estimating the geological strength index(GSI)and relationships to estimate the Hoek-Brown failure criterion parameters,mb,s and a,are presented.
文摘The pivotal aim of this study is to evaluate the rock mass characterization and deformation modulus. It is vital for rock mass classification to investigate important parameters of discontinuities. Therefore, Rock Mass Rating (RMR) and Tunneling quality index (Q) classification systems are applied to analyze 22 segments along proposed tunnel routes for hydropower in Kandiah valley, Khyber Pakhtunkhwa, Pakistan. RMR revealed the range of fair to good quality rocks, whereas Q yielded poor to fair quality rocks for investigated segments of the rock mass. Besides, Em values were acquired by empirical equations and computer-aided program RocLab, and both methods presented almost similar variation trend of their results. Hence, the correlations of Em with Q and RMR were carried out with higher values of the regression coefficient. This study has scientific significance to initially understand the rock mass conditions of Kandiah valley.
文摘Mass movements are very common problems in the eastern Black Sea region of Turkey due to its climate conditions, geological, and geomorphological characteristics. High slope angle, weathering, dense rainfalls, and anthropogenic impacts are generally reported as the most important triggering factors in the region. Following the portal slope excavations in the entrance section of Cankurtaran tunnel, located in the region, where the highly weathered andesitic tuff crops out, a circular toe failure occurred. The main target of the present study is to investigate the causes and occurrence mechanism of this failure and to determine the feasible remedial measures against it using finite element method(FEM) in four stages. These stages are slope stability analyses for pre-and postexcavation cases, and remediation design assessments for slope and tunnel. The results of the FEM-SSR analyses indicated that the insufficient initial support design and weathering of the andesitic tuffs are the main factors that caused the portal failure. After installing a rock retaining wall with jet grout columns and reinforced slope benching applications, the factor of safety increased from 0.83 to 2.80. In addition toslope stability evaluation, the Rock Mass Rating(RMR), Rock Mass Quality(Q) and New Austrian Tunneling Method(NATM) systems were also utilized as empirical methods to characterize the tunnel ground and to determine the tunnel support design. The performance of the suggested empirical support design, induced stress distributions and deformations were analyzed by means of numerical modelling. Finally, it was concluded that the recommended stabilization technique was essential for the dynamic long-term stability and prevents the effects of failure. Additionally, the FEM method gives useful and reasonably reliable results in evaluating the stability of cut slopes and tunnels excavated both in continuous and discontinuous rock masses.
文摘With the scale and cost of geotechnical engineering projects increasing rapidly over the past few decades,there is a clear need for the careful consideration of calculated risks in design.While risk is typically dealt with subjectively through the use of conservative design parameters,with the advent of reliability-based methods,this no longer needs to be the case.Instead,a quantitative risk approach can be considered that incorporates uncertainty in ground conditions directly into the design process to determine the variable ground response and support loads.This allows for the optimization of support on the basis of both worker safety and economic risk.This paper presents the application of such an approach to review the design of the initial lining system along a section of the Driskos twin tunnels as part of the Egnatia Odos highway in northern Greece.Along this section of tunnel,weak rock masses were encountered as well as high in situ stress conditions,which led to excessive deformations and failure of the as built temporary support.Monitoring data were used to validate the rock mass parameters selected in this area and a risk approach was used to determine,in hindsight,the most appropriate support category with respect to the cost of installation and expected cost of failure.Different construction sequences were also considered in the context of both convenience and risk cost.