Fractures running along a plane reflect the cracking progress.In this paper uniaxial and rockburst tests on a group of granite specimens from Sanya province are described.Scanning electron microscopic imaging was used...Fractures running along a plane reflect the cracking progress.In this paper uniaxial and rockburst tests on a group of granite specimens from Sanya province are described.Scanning electron microscopic imaging was used to characterize the fragments.Fractal fracture mechanics were used to analyze the microcracks in terms of both the crack type and the mineral constituent.A statistical analysis showed that the area of inter-granular cracking exceeds that of intra-granular cracking.Several types of crack were observed in the cracked areas.The percentage of intra-granular cracks in fragments from rockburst tests exceeds that from uniaxial compression tests.The results also showed that feldspar deformation was the main cause of fracture and that the consolidation along quartz grain boundaries was another weak area in the granite.Cracking along quartz grains had enough energy to enter the quartz crystal in the rockburst samples.All these results contribute to further research on rockburst mechanics.展开更多
This paper describes the deep rockburst simulation system to reproduce the granite instantaneous rockburst process.Based on the PIV(Particle Image Velocimetry)technique,quantitative analysis of a rockburst,the images ...This paper describes the deep rockburst simulation system to reproduce the granite instantaneous rockburst process.Based on the PIV(Particle Image Velocimetry)technique,quantitative analysis of a rockburst,the images of tracer particle,displacement and strain fields can be obtained,and the debris trajectory described.According to the observation of on-site tests,the dynamic rockburst is actually a gas–solid high speed flow process,which is caused by the interaction of rock fragments and surrounding air.With the help of analysis on high speed video and PIV images,the granite rockburst failure process is composed of six stages of platey fragment spalling and debris ejection.Meanwhile,the elastic energy for these six stages has been calculated to study the energy variation.The results indicate that the rockburst process can be summarized as:an initiating stage,intensive developing stage and gradual decay stage.This research will be helpful for our further understanding of the rockburst mechanism.展开更多
Based on the analysis of main causes of rockburst,the compressive strength,tensile strength,elastic energy index of rock and the maximum tangential stress of the cavern wall are chosen as the criterion indexes for roc...Based on the analysis of main causes of rockburst,the compressive strength,tensile strength,elastic energy index of rock and the maximum tangential stress of the cavern wall are chosen as the criterion indexes for rockburst prediction.A new approach using neural method is proposed to predict rockburst occurrence and its intensity.The prediction results show that it is feasible and appropriate to use artificial neural network model for rockburst prediction.展开更多
To review the rockburst proneness(or tendency)criteria of rock materials and compare the judgment accuracy of them,twenty criteria were summarized,and their judgment accuracy was evaluated and compared based on the la...To review the rockburst proneness(or tendency)criteria of rock materials and compare the judgment accuracy of them,twenty criteria were summarized,and their judgment accuracy was evaluated and compared based on the laboratory tests on fourteen types of rocks.This study begins firstly by introducing the twenty rockburst proneness criteria,and their origins,definitions,calculation methods and grading standards were summarized in detail.Subsequently,to evaluate and compare the judgment accuracy of the twenty criteria,a series of laboratory tests were carried out on fourteen types of rocks,and the rockburst proneness judgment results of the twenty criteria for the fourteen types of rocks were obtained accordingly.Moreover,to provide a unified basis for the judgment accuracy evaluation of above criteria,a classification standard(obtained according to the actual failure results and phenomena of rock specimen)of rockburst proneness in laboratory tests was introduced.The judgment results of the twenty criteria were compared with the judgment results of this classification standard.The results show that the judgment results of the criterion based on residual elastic energy(REE)index are completely consistent with the actual rockburst proneness,and the other criteria have some inconsistent situations more or less.Moreover,the REE index is based on the linear energy storage law and defined in form of a difference value and considered the whole failure process,and these superior characteristics ensure its accuracy.It is believed that the criterion based on REE index is comparatively more accurate and scientific than other criteria,and it can be recommended to be applied to judge the rockburst proneness of rock materials.展开更多
Rockbursts are sudden and violent rock failures that can lead to huge production and equipment losses,injury or death of mining workers.Buckling has been regarded as one of the key mechanisms of rockbursts,which are o...Rockbursts are sudden and violent rock failures that can lead to huge production and equipment losses,injury or death of mining workers.Buckling has been regarded as one of the key mechanisms of rockbursts,which are often induced by dynamic loads from mining excavations,such as drilling and blasting in underground mining.The paper attempts to investigate the dynamic buckling mechanism of pillar rockbursts in underground mining,by considering rockbursts as a dynamic stability problem of underground rock structures.The results include:(1)A new explanation of the“sudden and violent”phenomenon of rockbursts,characterized by exponential growth of the amplitudes of transverse displacement responses,even in the presence of rock damping;(2)Identification of the critical role in inducing rockbursts of dynamic loads that bear frequencies approximately double the natural pillar frequency;(3)The greater influence on rockburst occurrence of the amplitude of dynamic component relative to the static component of loads;and(4)Quantification of the relative effects of stress waveform of dynamic loads on pillar rockbursts,which are in decreasing order if other parameters remain constant:rectangular,sinusoidal,and exponential waveforms.Application examples are provided and limitations of the approach are discussed.This research is motivated by the on-going and ubiquitous occurrence of rockbursts in underground excavations all around the world.In contrast to conventional methods that use rock specimens or rock materials to study rockbursts,this investigation emphasizes the structural effects on rockbursts,which has potential applications in hard rock mining engineering.展开更多
Rock failure phenomena,such as rockburst,slabbing(or spalling) and zonal disintegration,related to deep underground excavation of hard rocks are frequently reported and pose a great threat to deep mining.Currently,the...Rock failure phenomena,such as rockburst,slabbing(or spalling) and zonal disintegration,related to deep underground excavation of hard rocks are frequently reported and pose a great threat to deep mining.Currently,the explanation for these failure phenomena using existing dynamic or static rock mechanics theory is not straightforward.In this study,new theory and testing method for deep underground rock mass under coupled static-dynamic loading are introduced.Two types of coupled loading modes,i.e.'critical static stress + slight disturbance' and 'elastic static stress + impact disturbance',are proposed,and associated test devices are developed.Rockburst phenomena of hard rocks under coupled static-dynamic loading are successfully reproduced in the laboratory,and the rockburst mechanism and related criteria are demonstrated.The results of true triaxial unloading compression tests on granite and red sandstone indicate that the unloading can induce slabbing when the confining pressure exceeds a certain threshold,and the slabbing failure strength is lower than the shear failure strength according to the conventional Mohr-Column criterion.Numerical results indicate that the rock unloading failure response under different in situ stresses and unloading rates can be characterized by an equivalent strain energy density.In addition,we present a new microseismic source location method without premeasuring the sound wave velocity in rock mass,which can efficiently and accurately locate the rock failure in hard rock mines.Also,a new idea for deep hard rock mining using a non-explosive continuous mining method is briefly introduced.展开更多
Brittleness is an important parameter controlling the mechanical behavior and failure characteristics of rocks under loading and unloading conditions,such as fracability,cutability,drillability and rockburst proneness...Brittleness is an important parameter controlling the mechanical behavior and failure characteristics of rocks under loading and unloading conditions,such as fracability,cutability,drillability and rockburst proneness.As such,it is of high practical value to correctly evaluate rock brittleness.However,the definition and measurement method of rock brittleness have been very diverse and not yet been standardized.In this paper,the definitions of rock brittleness are firstly reviewed,and several representative definitions of rock brittleness are identified and briefly discussed.The development and role of rock brittleness in different fields of rock engineering are also studied.Eighty brittleness indices publicly available in rock mechanics literature are compiled,and the measurement method,applicability and limitations of some indices are discussed.The results show that(1)the large number of brittleness indices and brittleness definitions is attributed to the different foci on the rock behavior when it breaks;(2)indices developed in one field usually are not directly applicable to other fields;and(3)the term“brittleness”is sometimes misused,and many empirically-obtained brittleness indices,which lack theoretical basis,fail to truly reflect rock brittleness.On the basis of this review,three measurement methods are identified,i.e.(1)elastic deformation before fracture,(2)shape of post-peak stressestrain curves,and(3)methods based on fracture mechanics theory,which have the potential to be further refined and unified to become the standard measurement methods of rock brittleness.It is highly beneficial for the rock mechanics community to develop a robust definition of rock brittleness.This study will undoubtedly provide a comprehensive timely reference for selecting an appropriate brittleness index for their applications,and will also pave the way for the development of a standard definition and measurement method of rock brittleness in the long term.展开更多
为探究弹性能指数、应力系数、脆性系数、埋深4种岩爆指标与岩爆等级之间的相关关系,解决复杂机器学习算法的黑盒问题。引入LIME(local interpretable model agnostic explanations)算法,完善岩爆机器学习预测过程中的可解释性。搜集了...为探究弹性能指数、应力系数、脆性系数、埋深4种岩爆指标与岩爆等级之间的相关关系,解决复杂机器学习算法的黑盒问题。引入LIME(local interpretable model agnostic explanations)算法,完善岩爆机器学习预测过程中的可解释性。搜集了中外190组岩爆实例工程构建数据集经过预处理后,通过9种机器学习算法比较获得最优算法并采用贝叶斯优化获得算法最优参数,建立岩爆预测模型。基于LIME可解释性算法,对4种岩爆指标进行相关、回归及阈值分析,最后采用弹性能指数及应力系数两种指标阈值对终南山隧道竖井工程进行岩爆预测。研究结果表明:岩爆等级与弹性能指数、应力系数呈线性相关,且弹性能指数线性关系更明显;岩爆等级与脆性系数、埋深呈非线性相关,且脆性系数非线性关系更明显;4个岩爆指标对岩爆等级影响程度依次为:弹性能指数、应力系数、埋深、脆性系数;LIME算法可以准确地表达岩爆等级与岩爆指标之间的相关关系且得到的两种指标阈值与终南山隧道竖井工程实例具有一致性。展开更多
Fault activation has been the focus of research community for years.However,the studies of fault activation remain immature,such as the fault activation mode and its major factors under constant normal stiffness(CNS)c...Fault activation has been the focus of research community for years.However,the studies of fault activation remain immature,such as the fault activation mode and its major factors under constant normal stiffness(CNS)conditions associated with large thickness of fault surrounding rock mass.In this study,the rock friction experiments were conducted to understand the fault activation modes under the CNS conditions.Two major parameters,i.e.the initial normal stress and loading rate,were considered and calibrated in the tests.To reveal the response mechanism of fault activation,the local strains near the fault plane were recorded,and the macroscopic stresses and displacements were analyzed.The testing results show that the effect of displacement-controlled loading rate is more pronounced under the CNS conditions than that under constant normal load(CNL)conditions.Both the normal and shear stresses drop suddenly when the stick-slip occurs.The decrease and increase of the normal stress are synchronous with the shear stress in the regular stick-slip scenario,but mismatch with the shear stress during the chaotic stick-slip process.The results are helpful for understanding the fault sliding mode and the prediction and prevention of fault slip.展开更多
Frictional stick–slip instability along pre‐existing faults has been accepted as the main mechanism of earthquakes for about 60 years,since it is believed that fracture of intact rocks cannot reflect such features in...Frictional stick–slip instability along pre‐existing faults has been accepted as the main mechanism of earthquakes for about 60 years,since it is believed that fracture of intact rocks cannot reflect such features inherent in earthquakes as low shear stresses activating instability,low stress drop,repetitive dynamic instability,and connection with pre‐existing faults.This paper demonstrates that all these features can be induced by a recently discovered shear rupture mechanism(fan‐hinged),which creates dynamic ruptures in intact rocks under stress conditions corresponding to seismogenic depths.The key element of this mechanism is the fan‐shaped structure of the head of extreme ruptures,which is formed as a result of an intense tensile cracking process,with the creation of inter‐crack slabs that act as hinges between the shearing rupture faces.The preference of the fan mechanism over the stick–slip mechanism is clear due to the extraordinary properties of the fan structure,which include the ability to generate new faults in intact dry rocks even at shear stresses that are an order of magnitude lower than the frictional strength;to provide shear resistance close to zero and abnormally large energy release;to cause a low stress drop;to use a new physics of energy supply to the rupture tip,providing supersonic rupture velocity;and to provide a previously unknown interrelation between earthquakes and volcanoes.All these properties make the fan mechanism the most dangerous rupture mechanism at the seismogenic depths of the earth's crust,generating the vast majority of earthquakes.The detailed analysis of the fan mechanism is presented in the companion paper“New physics of supersonic ruptures”published in DUSE.Further study of this subject is a major challenge for deep underground science,earthquake and fracture mechanics,volcanoes,physics,and tribology.展开更多
基金the National Basic Research Program of China (No.2006CB202200)the Creative Team Development Project of the Ministry of Education of China (No.IRT0656)
文摘Fractures running along a plane reflect the cracking progress.In this paper uniaxial and rockburst tests on a group of granite specimens from Sanya province are described.Scanning electron microscopic imaging was used to characterize the fragments.Fractal fracture mechanics were used to analyze the microcracks in terms of both the crack type and the mineral constituent.A statistical analysis showed that the area of inter-granular cracking exceeds that of intra-granular cracking.Several types of crack were observed in the cracked areas.The percentage of intra-granular cracks in fragments from rockburst tests exceeds that from uniaxial compression tests.The results also showed that feldspar deformation was the main cause of fracture and that the consolidation along quartz grain boundaries was another weak area in the granite.Cracking along quartz grains had enough energy to enter the quartz crystal in the rockburst samples.All these results contribute to further research on rockburst mechanics.
基金supported by the National Natural Science Foundation of China (No.41172270)National Basic Research Program (No.2011CB201201)
文摘This paper describes the deep rockburst simulation system to reproduce the granite instantaneous rockburst process.Based on the PIV(Particle Image Velocimetry)technique,quantitative analysis of a rockburst,the images of tracer particle,displacement and strain fields can be obtained,and the debris trajectory described.According to the observation of on-site tests,the dynamic rockburst is actually a gas–solid high speed flow process,which is caused by the interaction of rock fragments and surrounding air.With the help of analysis on high speed video and PIV images,the granite rockburst failure process is composed of six stages of platey fragment spalling and debris ejection.Meanwhile,the elastic energy for these six stages has been calculated to study the energy variation.The results indicate that the rockburst process can be summarized as:an initiating stage,intensive developing stage and gradual decay stage.This research will be helpful for our further understanding of the rockburst mechanism.
基金Supported by Chinese National Natural Science Foundaion(49972091)
文摘Based on the analysis of main causes of rockburst,the compressive strength,tensile strength,elastic energy index of rock and the maximum tangential stress of the cavern wall are chosen as the criterion indexes for rockburst prediction.A new approach using neural method is proposed to predict rockburst occurrence and its intensity.The prediction results show that it is feasible and appropriate to use artificial neural network model for rockburst prediction.
基金Project(41877272)supported by the National Natural Science Foundation of ChinaProject(2020zzts715)supported by the Fundamental Research Funds for the Central Universities of Central South University,ChinaProject(2242020R10023)supported by the Fundamental Research Funds for the Central Universities of Southeast University,China。
文摘To review the rockburst proneness(or tendency)criteria of rock materials and compare the judgment accuracy of them,twenty criteria were summarized,and their judgment accuracy was evaluated and compared based on the laboratory tests on fourteen types of rocks.This study begins firstly by introducing the twenty rockburst proneness criteria,and their origins,definitions,calculation methods and grading standards were summarized in detail.Subsequently,to evaluate and compare the judgment accuracy of the twenty criteria,a series of laboratory tests were carried out on fourteen types of rocks,and the rockburst proneness judgment results of the twenty criteria for the fourteen types of rocks were obtained accordingly.Moreover,to provide a unified basis for the judgment accuracy evaluation of above criteria,a classification standard(obtained according to the actual failure results and phenomena of rock specimen)of rockburst proneness in laboratory tests was introduced.The judgment results of the twenty criteria were compared with the judgment results of this classification standard.The results show that the judgment results of the criterion based on residual elastic energy(REE)index are completely consistent with the actual rockburst proneness,and the other criteria have some inconsistent situations more or less.Moreover,the REE index is based on the linear energy storage law and defined in form of a difference value and considered the whole failure process,and these superior characteristics ensure its accuracy.It is believed that the criterion based on REE index is comparatively more accurate and scientific than other criteria,and it can be recommended to be applied to judge the rockburst proneness of rock materials.
基金supported,in part,by the Natural Sciences and Engineering Research Council of Canada(NSERC)
文摘Rockbursts are sudden and violent rock failures that can lead to huge production and equipment losses,injury or death of mining workers.Buckling has been regarded as one of the key mechanisms of rockbursts,which are often induced by dynamic loads from mining excavations,such as drilling and blasting in underground mining.The paper attempts to investigate the dynamic buckling mechanism of pillar rockbursts in underground mining,by considering rockbursts as a dynamic stability problem of underground rock structures.The results include:(1)A new explanation of the“sudden and violent”phenomenon of rockbursts,characterized by exponential growth of the amplitudes of transverse displacement responses,even in the presence of rock damping;(2)Identification of the critical role in inducing rockbursts of dynamic loads that bear frequencies approximately double the natural pillar frequency;(3)The greater influence on rockburst occurrence of the amplitude of dynamic component relative to the static component of loads;and(4)Quantification of the relative effects of stress waveform of dynamic loads on pillar rockbursts,which are in decreasing order if other parameters remain constant:rectangular,sinusoidal,and exponential waveforms.Application examples are provided and limitations of the approach are discussed.This research is motivated by the on-going and ubiquitous occurrence of rockbursts in underground excavations all around the world.In contrast to conventional methods that use rock specimens or rock materials to study rockbursts,this investigation emphasizes the structural effects on rockbursts,which has potential applications in hard rock mining engineering.
基金jointly supported by the State Key Research Development Program of China (Grant No.2016YFC0600706)the National Natural Science Foundation of China (Grant Nos.41630642 and 11472311)
文摘Rock failure phenomena,such as rockburst,slabbing(or spalling) and zonal disintegration,related to deep underground excavation of hard rocks are frequently reported and pose a great threat to deep mining.Currently,the explanation for these failure phenomena using existing dynamic or static rock mechanics theory is not straightforward.In this study,new theory and testing method for deep underground rock mass under coupled static-dynamic loading are introduced.Two types of coupled loading modes,i.e.'critical static stress + slight disturbance' and 'elastic static stress + impact disturbance',are proposed,and associated test devices are developed.Rockburst phenomena of hard rocks under coupled static-dynamic loading are successfully reproduced in the laboratory,and the rockburst mechanism and related criteria are demonstrated.The results of true triaxial unloading compression tests on granite and red sandstone indicate that the unloading can induce slabbing when the confining pressure exceeds a certain threshold,and the slabbing failure strength is lower than the shear failure strength according to the conventional Mohr-Column criterion.Numerical results indicate that the rock unloading failure response under different in situ stresses and unloading rates can be characterized by an equivalent strain energy density.In addition,we present a new microseismic source location method without premeasuring the sound wave velocity in rock mass,which can efficiently and accurately locate the rock failure in hard rock mines.Also,a new idea for deep hard rock mining using a non-explosive continuous mining method is briefly introduced.
基金We gratefully acknowledge financial support from the National Natural Science Foundation of China(Grant Nos.51879135 and 41877217)The work in this paper was also supported by the Hong Kong Scholars Program(Grant No.XJ2017043).
文摘Brittleness is an important parameter controlling the mechanical behavior and failure characteristics of rocks under loading and unloading conditions,such as fracability,cutability,drillability and rockburst proneness.As such,it is of high practical value to correctly evaluate rock brittleness.However,the definition and measurement method of rock brittleness have been very diverse and not yet been standardized.In this paper,the definitions of rock brittleness are firstly reviewed,and several representative definitions of rock brittleness are identified and briefly discussed.The development and role of rock brittleness in different fields of rock engineering are also studied.Eighty brittleness indices publicly available in rock mechanics literature are compiled,and the measurement method,applicability and limitations of some indices are discussed.The results show that(1)the large number of brittleness indices and brittleness definitions is attributed to the different foci on the rock behavior when it breaks;(2)indices developed in one field usually are not directly applicable to other fields;and(3)the term“brittleness”is sometimes misused,and many empirically-obtained brittleness indices,which lack theoretical basis,fail to truly reflect rock brittleness.On the basis of this review,three measurement methods are identified,i.e.(1)elastic deformation before fracture,(2)shape of post-peak stressestrain curves,and(3)methods based on fracture mechanics theory,which have the potential to be further refined and unified to become the standard measurement methods of rock brittleness.It is highly beneficial for the rock mechanics community to develop a robust definition of rock brittleness.This study will undoubtedly provide a comprehensive timely reference for selecting an appropriate brittleness index for their applications,and will also pave the way for the development of a standard definition and measurement method of rock brittleness in the long term.
文摘为探究弹性能指数、应力系数、脆性系数、埋深4种岩爆指标与岩爆等级之间的相关关系,解决复杂机器学习算法的黑盒问题。引入LIME(local interpretable model agnostic explanations)算法,完善岩爆机器学习预测过程中的可解释性。搜集了中外190组岩爆实例工程构建数据集经过预处理后,通过9种机器学习算法比较获得最优算法并采用贝叶斯优化获得算法最优参数,建立岩爆预测模型。基于LIME可解释性算法,对4种岩爆指标进行相关、回归及阈值分析,最后采用弹性能指数及应力系数两种指标阈值对终南山隧道竖井工程进行岩爆预测。研究结果表明:岩爆等级与弹性能指数、应力系数呈线性相关,且弹性能指数线性关系更明显;岩爆等级与脆性系数、埋深呈非线性相关,且脆性系数非线性关系更明显;4个岩爆指标对岩爆等级影响程度依次为:弹性能指数、应力系数、埋深、脆性系数;LIME算法可以准确地表达岩爆等级与岩爆指标之间的相关关系且得到的两种指标阈值与终南山隧道竖井工程实例具有一致性。
基金supported by the Key Projects of the Yalong River Joint Fund of the National Natural Science Foundation of China(Grant No.U1865203)the National Natural Science Foundation of China(Grant Nos.52109142 and 41941018).
文摘Fault activation has been the focus of research community for years.However,the studies of fault activation remain immature,such as the fault activation mode and its major factors under constant normal stiffness(CNS)conditions associated with large thickness of fault surrounding rock mass.In this study,the rock friction experiments were conducted to understand the fault activation modes under the CNS conditions.Two major parameters,i.e.the initial normal stress and loading rate,were considered and calibrated in the tests.To reveal the response mechanism of fault activation,the local strains near the fault plane were recorded,and the macroscopic stresses and displacements were analyzed.The testing results show that the effect of displacement-controlled loading rate is more pronounced under the CNS conditions than that under constant normal load(CNL)conditions.Both the normal and shear stresses drop suddenly when the stick-slip occurs.The decrease and increase of the normal stress are synchronous with the shear stress in the regular stick-slip scenario,but mismatch with the shear stress during the chaotic stick-slip process.The results are helpful for understanding the fault sliding mode and the prediction and prevention of fault slip.
文摘Frictional stick–slip instability along pre‐existing faults has been accepted as the main mechanism of earthquakes for about 60 years,since it is believed that fracture of intact rocks cannot reflect such features inherent in earthquakes as low shear stresses activating instability,low stress drop,repetitive dynamic instability,and connection with pre‐existing faults.This paper demonstrates that all these features can be induced by a recently discovered shear rupture mechanism(fan‐hinged),which creates dynamic ruptures in intact rocks under stress conditions corresponding to seismogenic depths.The key element of this mechanism is the fan‐shaped structure of the head of extreme ruptures,which is formed as a result of an intense tensile cracking process,with the creation of inter‐crack slabs that act as hinges between the shearing rupture faces.The preference of the fan mechanism over the stick–slip mechanism is clear due to the extraordinary properties of the fan structure,which include the ability to generate new faults in intact dry rocks even at shear stresses that are an order of magnitude lower than the frictional strength;to provide shear resistance close to zero and abnormally large energy release;to cause a low stress drop;to use a new physics of energy supply to the rupture tip,providing supersonic rupture velocity;and to provide a previously unknown interrelation between earthquakes and volcanoes.All these properties make the fan mechanism the most dangerous rupture mechanism at the seismogenic depths of the earth's crust,generating the vast majority of earthquakes.The detailed analysis of the fan mechanism is presented in the companion paper“New physics of supersonic ruptures”published in DUSE.Further study of this subject is a major challenge for deep underground science,earthquake and fracture mechanics,volcanoes,physics,and tribology.