期刊文献+
共找到13,433篇文章
< 1 2 250 >
每页显示 20 50 100
Case study on the mechanics of NPR anchor cable compensation for large deformation tunnel in soft rock in the Transverse Mountain area,China
1
作者 LI Yong ZHENG Jing +3 位作者 HUO Shu-sen WANG Feng-nian HE Man-chao TAO Zhi-gang 《Journal of Central South University》 SCIE EI CAS CSCD 2024年第6期2054-2069,共16页
A study was conducted to analyze the deformation mechanism of strongly weathered quartz schist in the Daliangshan Tunnel,located in the western Transverse Mountain area.A large deformation problem was experienced duri... A study was conducted to analyze the deformation mechanism of strongly weathered quartz schist in the Daliangshan Tunnel,located in the western Transverse Mountain area.A large deformation problem was experienced during the tunnel construction.To mitigate this problem,a support system was designed incorporating negative Poisson ratio(NPR)anchor cables with negative Poisson ratio effect.Physical model experiments,field experiments,and numerical simulation experiments were conducted to investigate the compensation mechanical behavior of NPR anchor cables.The large deformations of soft rocks in the Daliangshan Tunnel are caused by a high ground stress,a high degree of joint fracture development,and a high degree of surrounding rock fragmentation.A compensation mechanics support system combining long and short NPR anchor cables was suggested to provide sufficient counter-support force(approximately 350 kN)for the surrounding rock inside the tunnel.Comparing the NPR anchor cable support system with the original support system used in the Daliangshan tunnel showed that an NPR anchor cable support system,combining cables of 6.3 m and 10.3 m in length,effectively prevented convergence of surrounding rock deformation,and the integrated settlement convergence value remained below 300 mm.This study provides an effective scientific basis for resolving large deformation problems in deeply buried soft rocks in western transverse mountain areas. 展开更多
关键词 soft rock large deformation NPR anchor cable physical model numerical simulation compensation mechanics
下载PDF
Characteristics of Rock Mechanics Response and Energy Evolution Regime of Deep Reservoirs in the Bozhong Sag,Bohai Bay Basin
2
作者 Suogui Shang Kechao Gao +4 位作者 QingbinWang Xinghua Zhang Pengli Zhou Jianhua Li Peng Chu 《Energy Engineering》 EI 2024年第9期2505-2524,共20页
Hydraulic fracturing is a mature and effectivemethod for deep oil and gas production,which provides a foundation for deep oil and gas production.One of the key aspects of implementing hydraulic fracturing technology l... Hydraulic fracturing is a mature and effectivemethod for deep oil and gas production,which provides a foundation for deep oil and gas production.One of the key aspects of implementing hydraulic fracturing technology lies in understanding mechanics response characteristics of rocks in deep reservoirs under complex stress conditions.In this work,based on outcrop core samples,high-stress triaxial compression tests were designed to simulate the rock mechanics behavior of deep reservoirs in Bozhong Sag.Additionally,this study analyzes the deformation and damage law for rock under different stress conditions.Wherein,with a particular focus on combining energy dissipation theory to further understand damage law for deep reservoirs.The experimental results show that regardless of stress conditions,the process of deformation/failure of deep-seated reservoirs goes through five stages:Fracture compaction,newfracture formation,stable fracture expansion,unstable fracture expansion,and post-peak residual deformation.Under different stress conditions,the energy change laws of specimens are similar.The energy dissipation process of rocks corresponds closely to the trend of deformation-failure curve,then displays distinctive stage characteristics.Wherein,in stage of rock fracture compaction,the input energy curve is approximately coincident with the elastic strain energy curve,while the dissipation energy curve remains near zero.With the increase of strain,the growth rate of elastic strain energy increases gradually,but with the deformation entering the crack propagation stage,the growth rate of elastic strain energy slows down and the dissipation energy increases gradually.Finally,in the post-peak stage,rock fracture releases a lot of energy,which leads to the sharp decline of elastic strain energy curve.In addition,the introduction of damage variable D quantifies the analysis of the extent of failure for rocks.During the process of increasing strain,rock damage exhibits nonlinear growth with increasing stress. 展开更多
关键词 Deep rock mechanics triaxial compression energy dissipation damage variable
下载PDF
Geometry and formation mechanism of tension gashes and their implication on the hydrocarbon accumulation in the deep-seated strata of sedimentary basin:A case from Shunnan area of Tarim Basin
3
作者 Yan-Nan Du Kong-You Wu +4 位作者 Yin Liu Yan-Ying Li Zi-Cheng Cao You-Wei Cui Jun Liu 《Petroleum Science》 SCIE EI CAS CSCD 2024年第1期87-99,共13页
With the theoretical and technological developments related to cratonic strike-slip faults,the Shuntuoguole Low Uplift in the Tarim Basin has attracted considerable attention recently.Affected by multi-stage tectonic ... With the theoretical and technological developments related to cratonic strike-slip faults,the Shuntuoguole Low Uplift in the Tarim Basin has attracted considerable attention recently.Affected by multi-stage tectonic movements,the strike-slip faults have controlled the distribution of hydrocarbon resources owing to the special fault characteristics and fault-related structures.In contrast,the kinematics and formation mechanism of strike-slip faults in buried sedimentary basins are difficult to investigate,limiting the discussion of these faults and hydrocarbon accumulation.In this study,we identified the characteristics of massive sigmoidal tension gashes(STGs)that formed in the Shunnan area of the Tarim Basin.High-resolution three-dimensional seismic data and attribute analyses were used to investigate their geometric and kinematic characteristics.Then,the stress state of each point of the STGs was calculated using seismic curvature attributes.Finally,the formation mechanism of the STGs and their roles in controlling hydrocarbon migration and accumulation were discussed.The results suggest that:(1)the STGs developed in the Shunnan area have a wide distribution,with a tensile fault arranged in an enéchelon pattern,showing an S-shaped bending.These STGs formed in multiple stages,and differential rotation occurred along the direction of strike-slip stress during formation.(2)Near the principal displacement zone of the strike-slip faults,the stress value of the STGs was higher,gradually decreasing at both ends.The shallow layer deformation was greater than the deep layer deformation.(3)STGs are critical for connecting source rocks,migrating oil and gas,sealing horizontally,and developing efficient reservoirs.This study not only provides seismic evidence for the formation and evolution of super large STGs,but also provides certain guidance for oil and gas exploration in this area. 展开更多
关键词 Tarim Basin Sigmoidal tension gashes Seismic attributes Shear stress calculation Formation mechanism Reservoir control
下载PDF
Temperature dependence of mechanical properties and damage evolution of hot dry rocks under rapid cooling
4
作者 Longjun Dong Yihan Zhang +2 位作者 Lichang Wang Lu Wang Shen Zhang 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第2期645-660,共16页
Understanding the differences in mechanical properties and damage characteristics of granitoid under high temperatures is crucial for exploring deep geothermal resources.This study analyzes the evolution of the acoust... Understanding the differences in mechanical properties and damage characteristics of granitoid under high temperatures is crucial for exploring deep geothermal resources.This study analyzes the evolution of the acoustic emission(AE)characteristics and mechanical parameters of granodiorite and granite after heating and water cooling by uniaxial compression and variable-angle shear tests under different temperature gradients.We identify their changes in mesostructure and mineral composition with electron probe microanalysis and scanning electron microscopy.Results show that these two hot dry rocks have similar diagenetic minerals and microstructure,but show significantly different mechanical and acoustic characteristics,and even opposing evolution trends in a certain temperature range.At the temperatures ranging from 100℃to 500℃,the compressive and shear mechanical properties of granodiorite switch repeatedly between weakening and strengthening,and those of granite show a continuous weakening trend.At 600℃,both rocks exhibit a deterioration of mechanical properties.The damage mode of granite is characterized by initiating at low stress,exponential evolutionary activity,and intensified energy release.In contrast,granodiorite exhibits the characteristics of initiating at high stress,volatile evolutionary activity,and intermittent energy release,due to its more stable microstructure and fewer thermal defects compared to granite.As the temperature increases,the initiation and propagation of secondary cracks in granodiorite are suppressed to a certain extent,and the seismicity and brittleness are enhanced.The subtle differences in grain size,microscopic heterogeneity,and mineral composition of the two hot dry rocks determine the different acoustic-mechanical characteristics under heating and cooling,and the evolution trends with temperature.These findings are of great significance for the scientific and efficient construction of rock mass engineering by rationally utilizing different rock strata properties. 展开更多
关键词 Hot dry rock Acoustic emission mechanical properties High temperature DAMAGE
下载PDF
Investigation on mechanical properties regulation of rock-like specimens based on 3D printing and similarity quantification
5
作者 Duanyang Zhuang Zexu Ning +3 位作者 Yunmin Chen Jinlong Li Qingdong Li Wenjie Xu 《International Journal of Mining Science and Technology》 SCIE EI CAS CSCD 2024年第5期573-585,共13页
3D printing is widely adopted to quickly produce rock mass models with complex structures in batches,improving the consistency and repeatability of physical modeling.It is necessary to regulate the mechanical properti... 3D printing is widely adopted to quickly produce rock mass models with complex structures in batches,improving the consistency and repeatability of physical modeling.It is necessary to regulate the mechanical properties of 3D-printed specimens to make them proportionally similar to natural rocks.This study investigates mechanical properties of 3D-printed rock analogues prepared by furan resin-bonded silica sand particles.The mechanical property regulation of 3D-printed specimens is realized through quantifying its similarity to sandstone,so that analogous deformation characteristics and failure mode are acquired.Considering similarity conversion,uniaxial compressive strength,cohesion and stress–strain relationship curve of 3D-printed specimen are similar to those of sandstone.In the study ranges,the strength of 3D-printed specimen is positively correlated with the additive content,negatively correlated with the sand particle size,and first increases then decreases with the increase of curing temperature.The regulation scheme with optimal similarity quantification index,that is the sand type of 70/140,additive content of 2.5‰and curing temperature of 81.6℃,is determined for preparing 3D-printed sandstone analogues and models.The effectiveness of mechanical property regulation is proved through uniaxial compression contrast tests.This study provides a reference for preparing rock-like specimens and engineering models using 3D printing technology. 展开更多
关键词 3D printing mechanical property regulation Similarity quantification rock analogue SANDSTONE
下载PDF
Application and prospects of 3D printing in physical experiments of rock mass mechanics and engineering:materials,methodologies and models 被引量:2
6
作者 Qingjia Niu Lishuai Jiang +3 位作者 Chunang Li Yang Zhao Qingbiao Wang Anying Yuan 《International Journal of Coal Science & Technology》 EI CAS CSCD 2023年第1期1-17,共17页
The existence of joints or other kinds of discontinuities has a dramatic efect on the stability of rock excavations and engineering.As a result,a great challenge in rock mass mechanics testing is to prepare rock or ro... The existence of joints or other kinds of discontinuities has a dramatic efect on the stability of rock excavations and engineering.As a result,a great challenge in rock mass mechanics testing is to prepare rock or rock-like samples with defects.In recent years,3D printing technology has become a promising tool in the feld of rock mass mechanics and engineering.This study frst reviews and discusses the research status of traditional test methods in rock mass mechanics tests of making rock samples with defects.Then,based on the comprehensive analysis of previous research,the application of 3D printing technology in rock mass mechanics is expounded from the following three aspects.The frst is the printing material.Although there are many materials for 3D printing,it has been found that 3D printing materials that can be used for rock mass mechanics research are very limited.After research,we summarize and evaluate printing material that can be used for rock mass mechanics studies.The second is the printing methodology,which mainly introduces the current application forms of 3D printing technology in rock mass mechanics.This includes printed precise casting molds and one-time printed samples.The last one is the printing model,which includes small-scale samples for mechanical tests and large-scale physical models.Then,the benefts and drawbacks of using 3D printing samples in mechanical tests and the validity of their simulation of real rock are discussed.Compared with traditional rock samples collected in nature or synthetic rock-like samples,the samples made by 3D printing technology have unique advantages,such as higher test repeatability,visualization of rock internal structure and stress distribution.There is thus great potential for the use of 3D printing in the feld of rock mass mechanics.However,3D printing materials also have shortcomings,such as insufcient material strength and accuracy at this stage.Finally,the application prospect of 3D printing technology in rock mass mechanics research is proposed. 展开更多
关键词 3D printing rock mass mechanics Prefabricated cracks rock-like material Fractured rock mass
下载PDF
Comparative analysis of thermodynamic and mechanical responses between underground hydrogen storage and compressed air energy storage in lined rock caverns
7
作者 Bowen Hu Liyuan Yu +5 位作者 Xianzhen Mi Fei Xu Shuchen Li Wei Li Chao Wei Tao Zhang 《International Journal of Mining Science and Technology》 SCIE EI CAS CSCD 2024年第4期531-543,共13页
Underground hydrogen storage(UHS)and compressed air energy storage(CAES)are two viable largescale energy storage technologies for mitigating the intermittency of wind and solar power.Therefore,it is meaningful to comp... Underground hydrogen storage(UHS)and compressed air energy storage(CAES)are two viable largescale energy storage technologies for mitigating the intermittency of wind and solar power.Therefore,it is meaningful to compare the properties of hydrogen and air with typical thermodynamic storage processes.This study employs a multi-physical coupling model to compare the operations of CAES and UHS,integrating gas thermodynamics within caverns,thermal conduction,and mechanical deformation around rock caverns.Gas thermodynamic responses are validated using additional simulations and the field test data.Temperature and pressure variations of air and hydrogen within rock caverns exhibit similarities under both adiabatic and diabatic simulation modes.Hydrogen reaches higher temperature and pressure following gas charging stage compared to air,and the ideal gas assumption may lead to overestimation of gas temperature and pressure.Unlike steel lining of CAES,the sealing layer(fibre-reinforced plastic FRP)in UHS is prone to deformation but can effectively mitigates stress in the sealing layer.In CAES,the first principal stress on the surface of the sealing layer and concrete lining is tensile stress,whereas UHS exhibits compressive stress in the same areas.Our present research can provide references for the selection of energy storage methods. 展开更多
关键词 Underground hydrogen storage Compressed air energy storage mechanical response Thermodynamic response Lined rock caverns
下载PDF
Porosity, permeability and rock mechanics of Lower Silurian Longmaxi Formation deep shale under temperature-pressure coupling in the Sichuan Basin, SW China 被引量:3
8
作者 SUN Chuanxiang NIE Haikuan +5 位作者 SU Haikun DU Wei LU Ting CHEN Yalin LIU Mi LI Jingchang 《Petroleum Exploration and Development》 2023年第1期85-98,共14页
To investigate the porosity, permeability and rock mechanics of deep shale under temperature-pressure coupling, we selected the core samples of deep shale from the Lower Silurian Longmaxi Formation in the Weirong and ... To investigate the porosity, permeability and rock mechanics of deep shale under temperature-pressure coupling, we selected the core samples of deep shale from the Lower Silurian Longmaxi Formation in the Weirong and Yongchuan areas of the Sichuan Basin for porosity and permeability experiments and a triaxial compression and sound wave integration experiment at the maximum temperature and pressure of 120 ℃ and 70 MPa. The results show that the microscopic porosity and permeability change and the macroscopic rock deformation are mutually constrained, both showing the trend of steep and then gentle variation. At the maximum temperature and pressure, the porosity reduces by 34%–71%, and the permeability decreases by 85%–97%. With the rising temperature and pressure, deep shale undergoes plastic deformation in which organic pores and clay mineral pores are compressed and microfractures are closed, and elastic deformation in which brittle mineral pores and rock skeleton particles are compacted. Compared with previous experiments under high confining pressure and normal temperature,the experiment under high temperature and high pressure coupling reveals the effect of high temperature on stress sensitivity of porosity and permeability. High temperature can increase the plasticity of the rock, intensify the compression of pores due to high confining pressure, and induce thermal stress between the rock skeleton particles, allowing the reopening of shale bedding or the creation of new fractures along weak planes such as bedding, which inhibits the decrease of permeability with the increase of temperature and confining pressure. Compared with the triaxial mechanical experiment at normal temperature, the triaxial compression experiment at high temperature and high pressure demonstrates that the compressive strength and peak strain of deep shale increase significantly due to the coupling of temperature and pressure. The compressive strength is up to 435 MPa and the peak strain exceeds 2%, indicating that high temperature is not conducive to fracture initiation and expansion by increasing rock plasticity. Lithofacies and mineral composition have great impacts on the porosity, permeability and rock mechanics of deep shale. Shales with different lithologies are different in the difficulty and extent of brittle failure. The stress-strain characteristics of rocks under actual geological conditions are key support to the optimization of reservoir stimulation program. 展开更多
关键词 Sichuan Basin Longmaxi Formation deep shale gas POROSITY PERMEABILITY rock mechanics high temperature and high pressure triaxial compression
下载PDF
Fracture behaviors of columnar jointed rock mass using interface mechanics theorem
9
作者 Wei Gao Shuangshuang Ge Chengjie Hu 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2023年第11期2877-2891,共15页
For a special geological structure of columnar jointed rock mass(CJRM),its mechanical properties are strongly affected by the columnar joints.To describe the fracture behaviors of CJRM using the basic theories of inte... For a special geological structure of columnar jointed rock mass(CJRM),its mechanical properties are strongly affected by the columnar joints.To describe the fracture behaviors of CJRM using the basic theories of interface mechanics for composite materials,the interface stresses of the vertical and horizontal joints,which are the two primary joints in the CJRM under triaxial compression,are studied,and their mathematical expressions are derived based on the superposition principle.Based on the obtained interface stresses of the vertical and horizontal joints in the CJRM,the crack initiation of the joint interface in the CJRM is studied using the maximum circumferential stress theory in fracture mechanics.Moreover,based on this investigation,the fracture behaviors of CJRM are analyzed.According to the results of similar material physical model tests for the CJRM,the theoretical study is verified.Finally,the influence of the mechanical parameters of the CJRM on the joint interface stress is discussed comprehensively. 展开更多
关键词 Columnar jointed rock mass(CJRM) Joint interface stress Interface mechanics Crack initiation stress Fracture behaviors
下载PDF
Numerical investigation of the mechanical behavior of the backfill–rock composite structure under triaxial compression 被引量:5
10
作者 Hongjian Lu Yiren Wang +2 位作者 Deqing Gan Jie Wu Xiaojun Wu 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2023年第5期802-812,共11页
To ensure safe and economical backfill mining,the mechanical response of the backfill–rock interaction system needs to be understood.The numerical investigation of the mechanical behavior of backfill–rock composite ... To ensure safe and economical backfill mining,the mechanical response of the backfill–rock interaction system needs to be understood.The numerical investigation of the mechanical behavior of backfill–rock composite structure(BRCS)under triaxial compression,which includes deformation,failure patterns,strength characteristics,and acoustic emission(AE)evolution,was proposed.The models used in the tests have one rough interface,two cement–iron tailings ratios(CTRs),four interface angles(IAs),and three confining pressures(CPs).Results showed that the deformation,strength characteristics,and failure patterns of BRCS under triaxial compression depend on IA,CP,and CTR.The stress–strain curves of BRCS under triaxial compression could be divided into five stages,namely,compaction,elasticity,yield,strain softening,and residual stress.The relevant AE counts have corresponding relationships with different stages.The triaxial compressive strengths of composites increase linearly with the increase of the CP.Furthermore,the CP stress strengthening effect occurs.When the IAs are45°and 60°,the failure areas of composites appear in the interface and backfill.When the IAs are 75°and 90°,the failure areas of composites appear in the backfill,interface,and rock.Moreover,the corresponding failure modes yield the combined shear failure.The research results provide the basis for further understanding of the stability of the BRCS. 展开更多
关键词 backfill–rock composite structure triaxial compression mechanical behavior acoustic emission numerical simulation
下载PDF
Deformation and failure mechanism of Yanjiao rock slope influenced by rainfall and water level fluctuation of the Xiluodu hydropower station reservoir 被引量:3
11
作者 Wang Neng-feng He Jian-xian +2 位作者 DU Xiao-xiang Cai Bin Zhao Jian-jun 《Journal of Mountain Science》 SCIE CSCD 2023年第1期1-14,共14页
With the construction of the Xiluodu hydropower station on the Jinsha River,the reservoir impoundment began in 2013 and the water level fluctuates annually between 540 m and 600 m above sea level.The Yanjiao rock slop... With the construction of the Xiluodu hydropower station on the Jinsha River,the reservoir impoundment began in 2013 and the water level fluctuates annually between 540 m and 600 m above sea level.The Yanjiao rock slope which is located on the left bank of the Jinsha River 75 km upstream of the Xiluodu dam site,began to deform in 2014.The potential failure of the slope not only threatens Yanjiao town but also affects the safe operation of the Xiluodu reservoir.This paper is to find the factors influencing the Yanjiao slope deformation through field investigation,geotechnical reconnaissance,and monitoring.Results show that the Yanjiao slope can be divided into a bank collapse area(BCA)and a strong deformation area(SDA)based on the crack distribution characteristics of the slope.The rear area of the slope has been experiencing persistent deformation with a maximum cumulative displacement(GPS monitoring point G4)of 505 mm and 399 mm in the horizontal and vertical directions,respectively.The potential failure surface of the slope is formed 36 m below the surface based on the borehole inclinometer.The bank collapses of the Yanjiao slope are directly caused by the reservoir impoundment while the deformation area of the slope is affected by the combination of the rainfall and reservoir water level fluctuation.Based on mechanism of the Yanjiao slope,prestressed anchor combined with the surface drainage and slope unloading are recommended to prevent potential deformation. 展开更多
关键词 Reservoir rock slope RAINFALL Reservoir water level fluctuation Deformation characteristics Slope failure mechanism
下载PDF
Strength weakening and its micromechanism in water–rock interaction,a short review in laboratory tests 被引量:3
12
作者 Cun Zhang Qingsheng Bai +3 位作者 Penghua Han Lei Wang Xiaojie Wang Fangtian Wang 《International Journal of Coal Science & Technology》 EI CAS CSCD 2023年第1期18-32,共15页
Water–rock interaction(WRI)is a topic of interest in geology and geotechnical engineering.Many geological hazards and engineering safety problems are severe under the WRI.This study focuses on the water weakening of ... Water–rock interaction(WRI)is a topic of interest in geology and geotechnical engineering.Many geological hazards and engineering safety problems are severe under the WRI.This study focuses on the water weakening of rock strength and its infuencing factors(water content,immersion time,and wetting–drying cycles).The strength of the rock mass decreases to varying degrees with water content,immersion time,and wetting–drying cycles depending on the rock mass type and mineral composition.The corresponding acoustic emission count and intensity and infrared radiation intensity also weaken accordingly.WRI enhances the plasticity of rock mass and reduces its brittleness.Various microscopic methods for studying the pore characterization and weakening mechanism of the WRI were compared and analyzed.Various methods should be adopted to study the pore evolution of WRI comprehensively.Microscopic methods are used to study the weakening mechanism of WRI.In future work,the mechanical parameters of rocks weakened under long-term water immersion(over years)should be considered,and more attention should be paid to how the laboratory scale is applied to the engineering scale. 展开更多
关键词 Water–rock interaction Weakening mechanism Water content Immersion time Wetting–drying cycles Microscopic methods
下载PDF
Mechanical and acoustic emission characteristics of anhydrite rock under freeze-thaw cycles 被引量:1
13
作者 ZHANG Chi JIN Xiao-guang +1 位作者 HOU Chao HE Jie 《Journal of Mountain Science》 SCIE CSCD 2023年第1期227-241,共15页
To study the damage mechanisms of anhydrite rock under freeze-thaw cycles, the physicalmechanical properties and the microcracking activities of anhydrite rock were investigated through mass variation, nuclear magneti... To study the damage mechanisms of anhydrite rock under freeze-thaw cycles, the physicalmechanical properties and the microcracking activities of anhydrite rock were investigated through mass variation, nuclear magnetic resonance, scanning electron microscope tests, and uniaxial compression combined with acoustic emission(AE) tests. Results show that with the increase of freeze-thaw processes,the mass, uniaxial compression strength, and elastic modulus of the anhydrite specimens decrease while the porosity and plasticity characteristics increase.For example, after 120 cycles, the uniaxial compression strength and elastic modulus decrease by 46.54% and 60.16%, and the porosity increase by 75%. Combined with the evolution trend of stressstrain curves and the detected events, three stages were labeled to investigate the AE characteristics in freeze-thaw weathered anhydrite rock. It is found that with the increase of freeze-thaw cycles, the proportions of AE counts in stage Ⅰ and stage Ⅱ show a decaying exponential trend. Contrarily, the proportion of AE counts in stage Ⅲ displays an exponential ascending trend. Meanwhile, as the freeze-thaw cycles increase, the low-frequency AE signals increase while the intermediate-frequency AE signals decrease. After 120 cycles, the proportion of low-frequency AE signals increases by 168.95%, and the proportion of intermediate-frequency AE signals reduces by 81.14%. It is concluded that the microtensile cracking events occupy a dominant position during the loading process. With the increase of freeze-thaw cycles, the b value of samples decreases.After 120 cycles, b value decreases by 27.2%, which means that the proportion of cracking events in rocks with small amplitude decreases. Finally, it is proposed that the freeze-thaw damage mechanism of anhydrite is also characterized by the water chemical softening effect. 展开更多
关键词 Freeze-thaw cycles Anhydrite rock Physical and mechanical properties AE characteristics Damage mechanism
下载PDF
Stress release mechanism of deep bottom hole rock by ultra-high-pressure water jet slotting 被引量:1
14
作者 Hua-jian Wang Hua-Lin Liao +6 位作者 Jun Wei Jian-Sheng Liu Wen-Long Niu Yong-Wang Liu Zhi-Chuan Guan Hedi Sllami John-Paul Latham 《Petroleum Science》 SCIE EI CAS CSCD 2023年第3期1828-1842,共15页
To solve the problems of rock strength increase caused by high in-situ stress,the stress release method with rock slot in the bottom hole by an ultra-high-pressure water jet is proposed.The stress conditions of bottom... To solve the problems of rock strength increase caused by high in-situ stress,the stress release method with rock slot in the bottom hole by an ultra-high-pressure water jet is proposed.The stress conditions of bottom hole rock,before and after slotting are analyzed and the stress release mechanism of slotting is clarified.The results show that the stress release by slotting is due to the coupling of three factors:the relief of horizontal stress,the stress concentration zone distancing away from the cutting face,and the increase of pore pressure caused by rock mass expansion;The stress concentration increases the effective stress of rock along the radial distance from O.6R to 1R(R is the radius of the well),and the presence of groove completely releases the stress,it also allows the stress concentration zone to be pushed away from the cutting face,while significantly lowering the value of stresses in the area the drilling bit acting,the maximum stress release efficiency can reach 80%.The effect of slotting characteristics on release efficiency is obvious when the groove location is near the borehole wall.With the increase of groove depth,the stress release efficiency is significantly increased,and the release range of effective stress is enlarged along the axial direction.Therefore,the stress release method and results of simulations in this paper have a guiding significance for best-improving rock-breaking efficiency and further understanding the technique. 展开更多
关键词 Hard rock SLOTTING Stress release Down hole pressures Poroelastic mechanics Fluid-structure Interaction Ultra-high-pressure water jet
下载PDF
INTEGRATED ANALYSIS APPROACHES TO ROCK MECHANICS PROBLEMS 被引量:8
15
作者 Hudson J A 《岩石力学与工程学报》 EI CAS CSCD 北大核心 2002年第11期1702-1707,共6页
In order to effectively cope with exponent increase of the complexity faced to the rock mechanics analysis problems and the large incompatibility existing between the information level required to model the rock mass ... In order to effectively cope with exponent increase of the complexity faced to the rock mechanics analysis problems and the large incompatibility existing between the information level required to model the rock mass and engineering and our obtainable information level at hand,the integrated approaches with intelligent characters are proposed. Many previous standard methods,such as precedent type analysis,rock classification,analytic method stress-based,basic numerical methods (BEM,FEM,DEM,hybrid),and their extended numerical methods (fully coupled) to be developed,can be selected respectively or integrated accordingly. It is alternative to develop basic/fully integrated system,and internet-based approaches. These novel methods can also be selected or integrated each other or with the standard methods to perform rock mechanics analysis. Some key techniques to develop these alternative methods are discussed. It may focus in future on developing fully integrated systems and internet-based approaches. Developing an environmental,virtual facility/space shall be firstly done for this collaborative research on internet. 展开更多
关键词 rock mechanics analysis integrated approach expert system rock engineering system neural network numerical method coupled modeling Internet-based approaches
下载PDF
Innovation and future of mining rock mechanics 被引量:41
16
作者 Manchao He Qi Wang Qunying Wu 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2021年第1期1-21,共21页
The 121 mining method of longwall mining first proposed in England has been widely used around the world.This method requires excavation of two mining roadways and reservation of one coal pillar to mine one working fa... The 121 mining method of longwall mining first proposed in England has been widely used around the world.This method requires excavation of two mining roadways and reservation of one coal pillar to mine one working face.Due to considerable excavation of roadway,the mining roadway is generally destroyed during coal mining.The stress concentration in the coal pillar can cause large deformation of surrounding rocks,rockbursts and other disasters,and subsequently a large volume of coal pillar resources will be wasted.To improve the coal recovery rate and reduce excavation of the mining roadway,the 111 mining method of longwall mining was proposed in the former Soviet Union based on the 121 mining method.The 111 mining method requires excavation of one mining roadway and setting one filling body to replace the coal pillar while maintaining another mining roadway to mine one working face.However,because the stress transfer structure of roadway and working face roof has not changed,the problem of stress concentration in the surrounding rocks of roadway has not been well solved.To solve the above problems,the conventional concept utilizing high-strength support to resist the mining pressure for the 121 and 111 mining methods should be updated.The idea is to utilize mining pressure and expansion characteristics of the collapsed rock mass in the goaf to automatically form roadways,avoiding roadway excavation and waste of coal pillar.Based on the basic principles of mining rock mechanics,the“equilibrium mining”theory and the“short cantilever beam”mechanical model are proposed.Key technologies,such as roof directional presplitting technology,negative Poisson’s ratio(NPR)high-prestress constant-resistance support technology,and gangue blocking support technology,are developed following the“equilibrium mining”theory.Accordingly,the 110 and N00 mining methods of an automatically formed roadway(AFR)by roof cutting and pressure releasing without pillars are proposed.The mining methods have been applied to a large number of coal mines with different overburdens,coal seam thicknesses,roof types and gases in China,realizing the integrated mode of coal mining and roadway retaining.On this basis,in view of the complex geological conditions and intelligent mining demand of coal mines,an intelligent and unmanned development direction of the“equilibrium mining”method is prospected. 展开更多
关键词 Mining rock mechanics Equilibrium mining theory Short cantilever beam model Automatically formed roadway without PILLARS Intelligent mining
下载PDF
Effects of seepage pressure on the mechanical behaviors and microstructure of sandstone 被引量:1
17
作者 Xuewei Liu Juxiang Chen +3 位作者 Bin Liu Sai Wang Quansheng Liu Jin Luo 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第6期2033-2051,共19页
Surrounding rocks of underground engineering are subjected to long-term seepage pressure,which can deteriorate the mechanical properties and cause serious disasters.In order to understand the impact of seepage pressur... Surrounding rocks of underground engineering are subjected to long-term seepage pressure,which can deteriorate the mechanical properties and cause serious disasters.In order to understand the impact of seepage pressure on the mechanical property of sandstone,uniaxial compression tests,P-wave velocity measurements,and nuclear magnetic resonance(NMR)tests were conducted on saturated sandstone samples with varied seepage pressures(i.e.0 MPa,3 MPa,4 MPa,5 MPa,6 MPa,7 MPa).The results demonstrate that the mechanical parameters(uniaxial compressive strength,peak strain,elastic modulus,and brittleness index),total energy,elastic strain energy,as well as elastic strain energy ratio,decrease with increasing seepage pressure,while the dissipation energy and dissipation energy ratio increase.Moreover,as seepage pressure increases,the micro-pores gradually transform into meso-pores and macro-pores.This increases the cumulative porosity of sandstone and decreases P-wave velocity.The numerical results indicate that as seepage pressure rises,the number of tensile cracks increases progressively,the angle range of microcracks is basically from 50-120to 80-100,and as a result,the failure mode transforms to the tensile-shear mixed failure mode.Finally,the effects of seepage pressure on mechanical properties were discussed.The results show that decrease in the effective stress and cohesion under the action of seepage pressure could lead to deterioration of strength behaviors of sandstone. 展开更多
关键词 rock mechanics mechanical property Seepage pressure Numerical simulation MICROCRACKS
下载PDF
Application and prospective of 3D printing in rock mechanics: A review 被引量:9
18
作者 Yong-tao Gao Tian-hua Wu Yu Zhou 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2021年第1期1-17,共17页
This review aims to discuss the application and development of three-dimensional printing(3DP) technology in the field of rock mechanics and the mechanical behaviors of 3D-printed specimens on the basis of various ava... This review aims to discuss the application and development of three-dimensional printing(3DP) technology in the field of rock mechanics and the mechanical behaviors of 3D-printed specimens on the basis of various available printing materials.This review begins with a brief description of the concepts and principles associated with 3DP, and then systematically elaborates the five major applications of 3DP technology in the field of rock mechanics, namely, the preparation of rock(including pre-flawed rock) specimens, preparation of joints, preparation of geophysical models, reconstruction of complex rock structures, and performance of bridging experimental testing and numerical simulation.Meanwhile, the mechanical performance of 3D-printed specimens created using six different printing materials, such as polymers, resin,gypsum, sand, ceramics, and rock-like geological materials, is reviewed in detail.Subsequently, some improvements that can make these 3D-printed specimens close to natural rocks and some limitations of 3DP technology in the application of rock mechanics are discussed.Some prospects that are required to be investigated in the future are also proposed.Finally, a brief summary is presented.This review suggests that 3DP technology, especially when integrated with other advanced technologies, such as computed tomography scanning and 3D scanning, has great potential in rock mechanics field. 展开更多
关键词 three-dimensional printing(3DP) rock mechanics 3DP material rock analogue 3DP geotechnical model numerical simulation
下载PDF
Advances in statistical mechanics of rock masses and its engineering applications 被引量:11
19
作者 Faquan Wu Jie Wu +3 位作者 Han Bao Bo Li Zhigang Shan Deheng Kong 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2021年第1期22-45,共24页
To efficiently link the continuum mechanics for rocks with the structural statistics of rock masses,a theoretical and methodological system called the statistical mechanics of rock masses(SMRM)was developed in the pas... To efficiently link the continuum mechanics for rocks with the structural statistics of rock masses,a theoretical and methodological system called the statistical mechanics of rock masses(SMRM)was developed in the past three decades.In SMRM,equivalent continuum models of stressestrain relationship,strength and failure probability for jointed rock masses were established,which were based on the geometric probability models characterising the rock mass structure.This follows the statistical physics,the continuum mechanics,the fracture mechanics and the weakest link hypothesis.A general constitutive model and complete stressestrain models under compressive and shear conditions were also developed as the derivatives of the SMRM theory.An SMRM calculation system was then developed to provide fast and precise solutions for parameter estimations of rock masses,such as full-direction rock quality designation(RQD),elastic modulus,Coulomb compressive strength,rock mass quality rating,and Poisson’s ratio and shear strength.The constitutive equations involved in SMRM were integrated into a FLAC3D based numerical module to apply for engineering rock masses.It is also capable of analysing the complete deformation of rock masses and active reinforcement of engineering rock masses.Examples of engineering applications of SMRM were presented,including a rock mass at QBT hydropower station in northwestern China,a dam slope of Zongo II hydropower station in D.R.Congo,an open-pit mine in Dexing,China,an underground powerhouse of Jinping I hydropower station in southwestern China,and a typical circular tunnel in Lanzhou-Chongqing railway,China.These applications verified the reliability of the SMRM and demonstrated its applicability to broad engineering issues associated with jointed rock masses. 展开更多
关键词 Statistical mechanics of rock masses(SMRM) Jointed rock mass Geometric probability model Failure probability Anisotropic constitutive model Engineering parameters
下载PDF
Application of artificial intelligence to rock mechanics:An overview 被引量:7
20
作者 Abiodun Ismail Lawal Sangki Kwon 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2021年第1期248-266,共19页
Different artificial intelligence(AI)methods have been applied to various aspects of rock mechanics,but the fact that none of these methods have been used as a standard implies that doubt as to their generality and va... Different artificial intelligence(AI)methods have been applied to various aspects of rock mechanics,but the fact that none of these methods have been used as a standard implies that doubt as to their generality and validity still exists.For this,a literature review of application of AI to the field of rock mechanics is presented.Comprehensive studies of the researches published in the top journals relative to the fields of rock mechanics,computer applications in engineering,and the textbooks were conducted.The performances of the AI methods that have been used in rock mechanics applications were evaluated.The literature review shows that AI methods have successfully been used to solve various problems in the rock mechanics field and they performed better than the traditional empirical,mathematical or statistical methods.However,their practical applicability is still an issue of concern as many of the existing AI models require some level of expertise before they can be used,because they are not in the form of tractable mathematical equations.Thus some advanced AI methods are still yet to be explored.The limited availability of dataset for the AI simulations is also identified as a major problem.The solutions to the identified problems and the possible future research focus were proposed in the study subsequently. 展开更多
关键词 Artificial intelligence(AI) rock mechanics Literature review Statistical method
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部