sing the natural limestone samples taken from the field with dimension of 500 mm×500 mm×1 000 mm, the D-D (dilatancy-diffusion) seismogeny pattern was modeled under the condition of water injection, which ob...sing the natural limestone samples taken from the field with dimension of 500 mm×500 mm×1 000 mm, the D-D (dilatancy-diffusion) seismogeny pattern was modeled under the condition of water injection, which observes the time-space evolutionary features about the relative physics fields of the loaded samples from deformation, formation of microcracks to the occurrence of main rupture. The results of observed apparent resistivity show: ① The process of the deformation from microcrack to main rupture on the loaded rock sample could be characterized by the precursory spatial-temporal changes in the observation of apparent resistivity; ② The precursory temporal changes of observation in apparent resistivity could be divided into several stages, and its spatial distribution shows the difference in different parts of the rock sample; ③ Before the main rupture of the rock sample the obvious ″tendency anomaly′ and ′short-term anomaly″ were observed, and some of them could be likely considered as the ″impending earthquake ″anomaly precursor of apparent resistivity. The changes and distribution features of apparent resistivity show that they are intrinsically related to the dilatancy phenomenon of the loaded rock sample. Finally, this paper discusses the mechanism of resistivity change of loaded rock sample theoretically.展开更多
A type of rock landslide is very common in practical engineering, whose stability is mainly controlled by the rock bridge between the steep tensile crack at the crest and the low-inclination weak discontinuities at th...A type of rock landslide is very common in practical engineering, whose stability is mainly controlled by the rock bridge between the steep tensile crack at the crest and the low-inclination weak discontinuities at the toe(namely, ligament is the term for the locking section in the slope). To obtain a deeper understanding into the failure process of this kind of landslide, twenty-four physical slope models containing a steep-gentle discontinuity pair(a steep crack in the upper part and a low-inclination discontinuity in the lower part) were tested by applying vertical loads at the crests. The results indicate that the inclination angle of the ligament(θ) has great influence on the failure and stability of this type of rock slope. With the change of θ, three failure patterns(five subtypes) concerning the tested slopes can be observed, i.e., tensile failure of the ligament(Type 1), tension-shear failure of the ligament(Type 2) and two-stage failure of the main body(Type 3). The failure process of each failure mode presents five stages in terms of crack development, vertical load, horizontal/vertical displacements and strains in the ligaments. The specific range of the ligament angle between different failure patterns is summarized. The discussion on the failure resistances and ductility of different failure patterns, and the guiding significances of the experimental findings to the stability evaluation and the reinforcement were conducted.展开更多
By analyzing the characteristics of development, structural evolution and reservoir beds of the residual carbonate strata, this study shows that the residual carbonate strata in the Yingmaili low uplift are favorable ...By analyzing the characteristics of development, structural evolution and reservoir beds of the residual carbonate strata, this study shows that the residual carbonate strata in the Yingmaili low uplift are favorable oil and gas accumulation series in the Tabei (northern Tarim uplift) uplift. There are different patterns of hydrocarbon accumulation on the northern and southern slopes of the Yingmaili low uplift. The north-south differentiation of oil reservoirs were caused by different lithologies of the residual carbonate strata and the key constraints on the development of the reservoir beds. The Mesozoic terrestrial organic matter in the Kuqa depression and the Palaeozoic marine organic matter in the Manjiaer sag of the Northern depression are the major hydrocarbon source rocks for the northern slope and southern slope respectively. The hydrocarbon accumulation on the northern and southern slopes is controlled by differences in maturity and thermal evolution history of these two kinds of organic matter. On the southern slope, the oil accumulation formed in the early stage was destroyed completely, and the period from the late Hercynian to the Himalayian is the most important time for hydrocarbon accumulation. However, the time of hydrocarbon accumulation on the northern slope began 5 Ma B.P. Carbonate inner buried anticlines reservoirs are present on the southern slope, while weathered crust and paleo-buried hill karst carbonate reservoirs are present on the northern slope. The northern and southern slopes had different controlling factors of hydrocarbon accumulation respectively. Fracture growth in the reservoir beds is the most important controlling factor on the southern slope; while hydrocarbon accumulation on the northern slope is controlled by weathered crust and cap rock.展开更多
Intact rock-like specimens and specimens that include a single, smooth planar joint at various angles are prepared for split Hopkinson pressure bar(SHPB) testing. A buffer pad between the striker bar and the inciden...Intact rock-like specimens and specimens that include a single, smooth planar joint at various angles are prepared for split Hopkinson pressure bar(SHPB) testing. A buffer pad between the striker bar and the incident bar of an SHPB apparatus is used to absorb some of the shock energy. This can generate loading rates of 20.2-4627.3 GPa/s, enabling dynamic peak stresses/strengths and associated failure patterns of the specimens to be investigated. The effects of the loading rate and angle of load applied on the dynamic peak stresses/strengths of the specimens are examined. Relevant experimental results demonstrate that the failure pattern of each specimen can be classified as four types: Type A, integrated with or without tiny flake-off; Type B, slide failure; Type C, fracture failure; and Type D, crushing failure. The dynamic peak stresses/strengths of the specimens that have similar failure patterns increase linearly with the loading rate, yielding high correlations that are evident on semi-logarithmic plots. The slope of the failure envelope is the smallest for slide failure, followed by crushing failure, and that of fracture failure is the largest. The magnitude of the plot slope of the dynamic peak stress against the loading rate for the specimens that are still integrated after testing is between that of slide failure and crushing failure. The angle of application has a limited effect on the dynamic peak stresses/strengths of the specimens regardless of the failure pattern, but it affects the bounds of the loading rates that yield each failure pattern, and thus influences the dynamic responses of the single jointed specimen. Slide failure occurs at the lowest loading rate of any failure, but can only occur in single jointed specimen that allows sliding.Crushing failure is typically associated with the largest loading rate, and fracture failure may occur when the loading rate is between the boundaries for slide failure and crushing failure.展开更多
The mechanisms for rock bursts occurrences in fold zones are complex, and the redistribution of in-situ stresses is closely related to the complexity of the structures. Analysis of the geomorphology of fold structures...The mechanisms for rock bursts occurrences in fold zones are complex, and the redistribution of in-situ stresses is closely related to the complexity of the structures. Analysis of the geomorphology of fold structures and changes of coal thickness can help identify zones prone to rock bursts to improve safety and productivity in coal mines. This study investigated the distribution characteristics of fold structures in coal seams in fold zones in four mines in northwest China. Geometrical characteristics of fold structures in coal seams and changes of coal thickness were analysed, based on comprehensive evaluation indexes,such as the length–width ratio of folds, interlimb angle, ratio P1 of projected width of fold limbs to that of the hinge zone, curvature ratio P2, the maximum curvature and amplitude. The statistical analysis of the four coal mines shows that the length–width ratio of folds changed from 0.78 to 2.03 and the maximum curvature of cross sections of folds was less than 0.04. The curvature ratio of cross section of a fold in the structure was no more than 1.4 and the interlimb angles of cross sections of 89% of folds were larger than 150°. Gentle fold structures were dominant and the specific geological morphologies were domes or basins. The isopleth of coal thickness above the coal mines showed a fluctuation trend similar to the contour line of the floor of coal seams. The coal thickness in an anticline area was smaller than that in the neighboring syncline area. Therefore, the overall variation of coal thickness in the mining areas was likely to have a relation with the direction of the regional principal stress.展开更多
为研究高应力围岩扰动破坏机制,开展了不同围压下类岩石试件的三轴常规压缩和三轴循环扰动试验,得到了试件的扰动应力–应变规律和变形破坏特征,并对试件开展了核磁共振(Nuclear Magnetic Resonance)成像试验,从微观角度进一步阐明了试...为研究高应力围岩扰动破坏机制,开展了不同围压下类岩石试件的三轴常规压缩和三轴循环扰动试验,得到了试件的扰动应力–应变规律和变形破坏特征,并对试件开展了核磁共振(Nuclear Magnetic Resonance)成像试验,从微观角度进一步阐明了试件扰动破坏机理。研究结果表明:(1)试件在不同围压下均存在一个阈值强度,轴向荷载超过阈值强度后,轴向变形对扰动变得敏感,再次施加扰动会引起试件显著变形,当轴向荷载低于阈值强度时,变形对扰动不敏感。阈值强度与极限强度的比值可以反映试件的抗扰动能力,随着围压增大,该比值呈现逐步递减的规律,说明高围压下试件抗扰动能力下降,对扰动作用更敏感。(2)扰动作用下类岩石试件存在弱化效应,如常规三轴10MPa围压下试件表现出腰鼓破坏,而受扰动作用后,试件呈现斜切脆性破坏,与常规三轴5MPa围压下破坏形态相近。(3)岩石试件在高应力作用下进入塑性流动状态,内部颗粒重新排列,内部小孔隙与大孔隙的占比减少,而中孔隙的占比显著增多,试件内部孔隙率整体降低。展开更多
文摘sing the natural limestone samples taken from the field with dimension of 500 mm×500 mm×1 000 mm, the D-D (dilatancy-diffusion) seismogeny pattern was modeled under the condition of water injection, which observes the time-space evolutionary features about the relative physics fields of the loaded samples from deformation, formation of microcracks to the occurrence of main rupture. The results of observed apparent resistivity show: ① The process of the deformation from microcrack to main rupture on the loaded rock sample could be characterized by the precursory spatial-temporal changes in the observation of apparent resistivity; ② The precursory temporal changes of observation in apparent resistivity could be divided into several stages, and its spatial distribution shows the difference in different parts of the rock sample; ③ Before the main rupture of the rock sample the obvious ″tendency anomaly′ and ′short-term anomaly″ were observed, and some of them could be likely considered as the ″impending earthquake ″anomaly precursor of apparent resistivity. The changes and distribution features of apparent resistivity show that they are intrinsically related to the dilatancy phenomenon of the loaded rock sample. Finally, this paper discusses the mechanism of resistivity change of loaded rock sample theoretically.
基金supported by the National Natural Science Foundation of China (No. 41672300)
文摘A type of rock landslide is very common in practical engineering, whose stability is mainly controlled by the rock bridge between the steep tensile crack at the crest and the low-inclination weak discontinuities at the toe(namely, ligament is the term for the locking section in the slope). To obtain a deeper understanding into the failure process of this kind of landslide, twenty-four physical slope models containing a steep-gentle discontinuity pair(a steep crack in the upper part and a low-inclination discontinuity in the lower part) were tested by applying vertical loads at the crests. The results indicate that the inclination angle of the ligament(θ) has great influence on the failure and stability of this type of rock slope. With the change of θ, three failure patterns(five subtypes) concerning the tested slopes can be observed, i.e., tensile failure of the ligament(Type 1), tension-shear failure of the ligament(Type 2) and two-stage failure of the main body(Type 3). The failure process of each failure mode presents five stages in terms of crack development, vertical load, horizontal/vertical displacements and strains in the ligaments. The specific range of the ligament angle between different failure patterns is summarized. The discussion on the failure resistances and ductility of different failure patterns, and the guiding significances of the experimental findings to the stability evaluation and the reinforcement were conducted.
基金part of the National Key Fundamental Research Program(No.2005CB422108)the National Natural Science Foundation of China(Grant No.40672092).
文摘By analyzing the characteristics of development, structural evolution and reservoir beds of the residual carbonate strata, this study shows that the residual carbonate strata in the Yingmaili low uplift are favorable oil and gas accumulation series in the Tabei (northern Tarim uplift) uplift. There are different patterns of hydrocarbon accumulation on the northern and southern slopes of the Yingmaili low uplift. The north-south differentiation of oil reservoirs were caused by different lithologies of the residual carbonate strata and the key constraints on the development of the reservoir beds. The Mesozoic terrestrial organic matter in the Kuqa depression and the Palaeozoic marine organic matter in the Manjiaer sag of the Northern depression are the major hydrocarbon source rocks for the northern slope and southern slope respectively. The hydrocarbon accumulation on the northern and southern slopes is controlled by differences in maturity and thermal evolution history of these two kinds of organic matter. On the southern slope, the oil accumulation formed in the early stage was destroyed completely, and the period from the late Hercynian to the Himalayian is the most important time for hydrocarbon accumulation. However, the time of hydrocarbon accumulation on the northern slope began 5 Ma B.P. Carbonate inner buried anticlines reservoirs are present on the southern slope, while weathered crust and paleo-buried hill karst carbonate reservoirs are present on the northern slope. The northern and southern slopes had different controlling factors of hydrocarbon accumulation respectively. Fracture growth in the reservoir beds is the most important controlling factor on the southern slope; while hydrocarbon accumulation on the northern slope is controlled by weathered crust and cap rock.
基金the Science and Technology authority of Taiwan, China, for financially supporting this research under Grant No.NSC 102-2221-E-027-071-MY3
文摘Intact rock-like specimens and specimens that include a single, smooth planar joint at various angles are prepared for split Hopkinson pressure bar(SHPB) testing. A buffer pad between the striker bar and the incident bar of an SHPB apparatus is used to absorb some of the shock energy. This can generate loading rates of 20.2-4627.3 GPa/s, enabling dynamic peak stresses/strengths and associated failure patterns of the specimens to be investigated. The effects of the loading rate and angle of load applied on the dynamic peak stresses/strengths of the specimens are examined. Relevant experimental results demonstrate that the failure pattern of each specimen can be classified as four types: Type A, integrated with or without tiny flake-off; Type B, slide failure; Type C, fracture failure; and Type D, crushing failure. The dynamic peak stresses/strengths of the specimens that have similar failure patterns increase linearly with the loading rate, yielding high correlations that are evident on semi-logarithmic plots. The slope of the failure envelope is the smallest for slide failure, followed by crushing failure, and that of fracture failure is the largest. The magnitude of the plot slope of the dynamic peak stress against the loading rate for the specimens that are still integrated after testing is between that of slide failure and crushing failure. The angle of application has a limited effect on the dynamic peak stresses/strengths of the specimens regardless of the failure pattern, but it affects the bounds of the loading rates that yield each failure pattern, and thus influences the dynamic responses of the single jointed specimen. Slide failure occurs at the lowest loading rate of any failure, but can only occur in single jointed specimen that allows sliding.Crushing failure is typically associated with the largest loading rate, and fracture failure may occur when the loading rate is between the boundaries for slide failure and crushing failure.
基金the financial support provided by the State Key Research Development Program of China (No.2016YFC0801406)the Natural Science Foundation of Jiangsu Province of China (No.BK20171191)National Natural Science Foundation of China(Nos.51674253,51734009)
文摘The mechanisms for rock bursts occurrences in fold zones are complex, and the redistribution of in-situ stresses is closely related to the complexity of the structures. Analysis of the geomorphology of fold structures and changes of coal thickness can help identify zones prone to rock bursts to improve safety and productivity in coal mines. This study investigated the distribution characteristics of fold structures in coal seams in fold zones in four mines in northwest China. Geometrical characteristics of fold structures in coal seams and changes of coal thickness were analysed, based on comprehensive evaluation indexes,such as the length–width ratio of folds, interlimb angle, ratio P1 of projected width of fold limbs to that of the hinge zone, curvature ratio P2, the maximum curvature and amplitude. The statistical analysis of the four coal mines shows that the length–width ratio of folds changed from 0.78 to 2.03 and the maximum curvature of cross sections of folds was less than 0.04. The curvature ratio of cross section of a fold in the structure was no more than 1.4 and the interlimb angles of cross sections of 89% of folds were larger than 150°. Gentle fold structures were dominant and the specific geological morphologies were domes or basins. The isopleth of coal thickness above the coal mines showed a fluctuation trend similar to the contour line of the floor of coal seams. The coal thickness in an anticline area was smaller than that in the neighboring syncline area. Therefore, the overall variation of coal thickness in the mining areas was likely to have a relation with the direction of the regional principal stress.
文摘为研究高应力围岩扰动破坏机制,开展了不同围压下类岩石试件的三轴常规压缩和三轴循环扰动试验,得到了试件的扰动应力–应变规律和变形破坏特征,并对试件开展了核磁共振(Nuclear Magnetic Resonance)成像试验,从微观角度进一步阐明了试件扰动破坏机理。研究结果表明:(1)试件在不同围压下均存在一个阈值强度,轴向荷载超过阈值强度后,轴向变形对扰动变得敏感,再次施加扰动会引起试件显著变形,当轴向荷载低于阈值强度时,变形对扰动不敏感。阈值强度与极限强度的比值可以反映试件的抗扰动能力,随着围压增大,该比值呈现逐步递减的规律,说明高围压下试件抗扰动能力下降,对扰动作用更敏感。(2)扰动作用下类岩石试件存在弱化效应,如常规三轴10MPa围压下试件表现出腰鼓破坏,而受扰动作用后,试件呈现斜切脆性破坏,与常规三轴5MPa围压下破坏形态相近。(3)岩石试件在高应力作用下进入塑性流动状态,内部颗粒重新排列,内部小孔隙与大孔隙的占比减少,而中孔隙的占比显著增多,试件内部孔隙率整体降低。