期刊文献+
共找到7篇文章
< 1 >
每页显示 20 50 100
The construction of shale rock physics model and brittleness prediction for high-porosity shale gas-bearing reservoir 被引量:3
1
作者 Xin-Peng Pan Guang-Zhi Zhang Jiao-Jiao Chen 《Petroleum Science》 SCIE CAS CSCD 2020年第3期658-670,共13页
Due to the huge differences between the unconventional shale and conventional sand reservoirs in many aspects such as the types and the characteristics of minerals,matrix pores and fluids,the construction of shale roc... Due to the huge differences between the unconventional shale and conventional sand reservoirs in many aspects such as the types and the characteristics of minerals,matrix pores and fluids,the construction of shale rock physics model is significant for the exploration and development of shale reservoirs.To make a better characterization of shale gas-bearing reservoirs,we first propose a new but more suitable rock physics model to characterize the reservoirs.We then use a well A to demonstrate the feasibility and reliability of the proposed rock physics model of shale gas-bearing reservoirs.Moreover,we propose a new brittleness indicator for the high-porosity and organic-rich shale gas-bearing reservoirs.Based on the parameter analysis using the constructed rock physics model,we finally compare the new brittleness indicator with the commonly used Young’s modulus in the content of quartz and organic matter,the matrix porosity,and the types of filled fluids.We also propose a new shale brittleness index by integrating the proposed new brittleness indicator and the Poisson’s ratio.Tests on real data sets demonstrate that the new brittleness indicator and index are more sensitive than the commonly used Young’s modulus and brittleness index for the high-porosity and high-brittleness shale gas-bearing reservoirs. 展开更多
关键词 Shale gas rock physics model Brittleness prediction
下载PDF
Rock physics inversion based on an optimized MCMC method 被引量:1
2
作者 Zhang Jia-Jia Li Hong-Bing +2 位作者 Zhang Guang-Zhi Gu Yi-Peng Liu Zhuo-Fan 《Applied Geophysics》 SCIE CSCD 2021年第3期288-298,431,共12页
Rock physics inversion is to use seismic elastic properties of underground strata for predicting reservoir petrophysical parameters.The Markov chain Monte Carlo(MCMC)algorithm is commonly used to solve rock physics in... Rock physics inversion is to use seismic elastic properties of underground strata for predicting reservoir petrophysical parameters.The Markov chain Monte Carlo(MCMC)algorithm is commonly used to solve rock physics inverse problems.However,all the parameters to be inverted are iterated simultaneously in the conventional MCMC algorithm.What is obtained is an optimal solution of combining the petrophysical parameters with being inverted.This study introduces the alternating direction(AD)method into the MCMC algorithm(i.e.the optimized MCMC algorithm)to ensure that each petrophysical parameter can get the optimal solution and improve the convergence of the inversion.Firstly,the Gassmann equations and Xu-White model are used to model shaly sandstone,and the theoretical relationship between seismic elastic properties and reservoir petrophysical parameters is established.Then,in the framework of Bayesian theory,the optimized MCMC algorithm is used to generate a Markov chain to obtain the optimal solution of each physical parameter to be inverted and obtain the maximum posterior density of the physical parameter.The proposed method is applied to actual logging and seismic data and the results show that the method can obtain more accurate porosity,saturation,and clay volume. 展开更多
关键词 rock physics inversion petrophysical parameters prediction rock physics model optimized MCMC
下载PDF
Simplifying the Integration of Petrophysics and Rock-Physics to Identify Hydrocarbon Bearing Rocks on Seismic
3
作者 Arfan Ali Erick Alvarez 《International Journal of Geosciences》 CAS 2022年第10期951-972,共22页
A considerable effort has been made in the literature for quality assurance (QA) and quality checking (QC) of the petrophysical log data for computation of reservoir rock property parameters. Well log data plays an in... A considerable effort has been made in the literature for quality assurance (QA) and quality checking (QC) of the petrophysical log data for computation of reservoir rock property parameters. Well log data plays an integral role in building a rock physics model for quantitative interpretation (QI) work. A poor-quality rock physics model may lead to significant financial and HSSE implications by drilling wells in undesired locations. Historically, a variety of techniques have been used including histograms and cross plots for reviewing the feasibility of petrophysical logs for QI work. However, no attempt has ever been made to introduce a simplified workflow. This paper serves two-fold. It provides a simplified step by step approach for building a petrophysics/rock physics model. A case study has been presented to compare the synthetic seismogram generated from the simplified workflow with the actual seismic trace at well locations. Secondly, the paper shows how a few key cross plots and rock property parameters provide adequate information to validate petrophysical data, distinguish overburden and reservoir sections, and to help identify fluids and saturation trends within the reservoir sands. In the mentioned case study, the robustness of the simplified rock physics model has helped seismic data to successfully distinguish hydrocarbon bearing reservoir sands from non-reservoir shales. 展开更多
关键词 Petrophysics-rock physics Integration rock physics model Quantitative Interpretation Simplified Workflow Seismic to Well Tie
下载PDF
Multi-exponential model to describe pressure-dependent P-and S-wave velocities and its use to estimate the crack aspect ratio 被引量:1
4
作者 Mihály Dobróka Norbert Péter Szabó +1 位作者 Tünde Edit Dobróka Mátyás Krisztián Baracza 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2022年第2期385-395,共11页
We present new quantitative model describing the pressure dependence of acoustic P-and S-wave velocities.Assuming that a variety of individual mechanisms or defects(such as cracks,pore collapse and grain crushing)can ... We present new quantitative model describing the pressure dependence of acoustic P-and S-wave velocities.Assuming that a variety of individual mechanisms or defects(such as cracks,pore collapse and grain crushing)can contribute to the pressure-dependent change of the wave velocity,we order a characteristic pressure to all of them and allow a series of exponential terms in the description of the(Pand S-waves)velocity-pressure function.We estimate the parameters of the multi-exponential rock physical model in inversion procedures using laboratory measured P-and S-wave velocity data.As is known,the conventional damped least squares method gives acceptable results only when one or two individual mechanisms are assumed.Increasing the number of exponential terms leads to highly nonlinear ill-posed inverse problem.Due to this reason,we develop the spectral inversion method(SIM)in which the velocity amplitudes(the spectral lines in the characteristic pressure spectrum)are only considered as unknowns.The characteristic pressures(belonging to the velocity amplitudes)are excluded from the set of inversion unknowns,instead,they are defined in a set of fixed positions equidistantly distributed in the actual interval of the independent variable(pressure).Through this novel linear inversion method,we estimate the parameters of the multi-exponential rock physical model using laboratory measured P-and S-wave velocity data.The characteristic pressures are related to the closing pressures of cracks which are described by well-known rock mechanical relationships depending on the aspect ratio of elliptical cracks.This gives the possibility to estimate the aspect ratios in terms of the characteristic pressures. 展开更多
关键词 Multi-exponential rock physical model Spectral inversion method(SIM) Crack aspect ratio Characteristic pressures
下载PDF
Influence of Gas Hydrate on the Acoustic Properties of Sediment: A Comprehensive Review with a Focus on Experimental Measurements 被引量:1
5
作者 ZHANG Qi LIU Xin +1 位作者 HE Tao LU Hailong 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2022年第2期713-726,共14页
In recent years, natural gas hydrate has attracted increasing attention worldwide as a potential alternative energy source due to its attributes of wide distribution, large reserves, and low carbon. Since the acoustic... In recent years, natural gas hydrate has attracted increasing attention worldwide as a potential alternative energy source due to its attributes of wide distribution, large reserves, and low carbon. Since the acoustic characteristics of hydratebearing reservoirs clearly differ from those of adjacent formations, an acoustic approach, using seismic and acoustic logging, is one of the most direct, effective and widely used methods among the identification and characterization techniques for hydrate reservoir exploration. This review of research on the influence of hydrate(content and distribution) on the acoustic properties(velocity and attenuation) of sediments in the past two decades includes experimental studies based on different hydrate formation methods and measurements, as well as rock physics models. The main problems in current research are also pointed out and future prospects discussed. 展开更多
关键词 gas hydrate acoustic properties rock physics model experimental measurements
下载PDF
Shale Gas Characterization of Sembar Formation, Khipro Area, Pakistan
6
作者 Muhammad Sohail Khan Zainab Bibi 《International Journal of Geosciences》 2016年第8期1009-1019,共12页
This study pertains to the evaluation of shale gas and rock physics properties of this area with respect to its total organic content of Sember Formation, Khiproarea, Pakistan. We use well logs data for this study. Th... This study pertains to the evaluation of shale gas and rock physics properties of this area with respect to its total organic content of Sember Formation, Khiproarea, Pakistan. We use well logs data for this study. The Khipro area is prominent in the Lower Indus Basin for its hydrocarbon (oil and gas) structural traps. In shale gas evaluation, TOC of Sember Formation is estimated. The analysis has been done with the help of the wire line data of the well Bilal North-01. The presence of shale gas in the study area is analyzed with the help of different techniques. Rock physics and petrophysical analysis have been done in order to get the properties of the area related to the shale gas evaluation. 展开更多
关键词 Shale Gas Reservoir Characterization Well Log Response in Shale Gas Methods to Compute TOC rock physics model for Shale Gas
下载PDF
Seismic Methods for Exploration and Exploitation of Gas Hydrate 被引量:2
7
作者 Hemin Yuan Yun Wang Xiangchun Wang 《Journal of Earth Science》 SCIE CAS CSCD 2021年第4期839-849,共11页
Seismic and rock physics play important roles in gas hydrate exploration and production.To provide a clear cognition of the applications of geophysical methods on gas hydrate,this work presents a review of the seismic... Seismic and rock physics play important roles in gas hydrate exploration and production.To provide a clear cognition of the applications of geophysical methods on gas hydrate,this work presents a review of the seismic techniques,rock physics models,and production methods in gas hydrate exploration and exploitation.We first summarize the commonly used seismic techniques in identifying the gas hydrate formations and analyze the limitations and challenges of these techniques.Then,we outline the rock physics models linking the micro-scale physical properties and macro-scale seismic velocities of gas hydrate sediments,and generalize the common workflow,showing the frequently-used procedures of building models with detailed analysis of the potential uncertainties.Afterwards,we summarize the production techniques of gas hydrate and point out the problems regarding the petrophysical basis and abnormal seismic responses.In the end,considering the geological and engineering problems,we come up with several aspects of using geophysical techniques to solve the problems in gas hydrate exploration and production,hopefully to provide some important clues for future studies of gas hydrate. 展开更多
关键词 gas hydrate seismic method rock physics model production technique
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部