期刊文献+

二次检索

题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
共找到2篇文章
< 1 >
每页显示 20 50 100
Quantitative characterization of tight gas sandstone reservoirs using seismic data via an integrated rock-physics-based framework
1
作者 Zhi-Qi Guo Xiao-Ying Qin Cai Liu 《Petroleum Science》 SCIE EI CAS CSCD 2023年第6期3428-3440,共13页
Seismic characterizing of tight gas sandstone (TGS) reservoirs is essential for identifying promising gas-bearing regions. However, exploring the petrophysical significance of seismic-inverted elastic properties is ch... Seismic characterizing of tight gas sandstone (TGS) reservoirs is essential for identifying promising gas-bearing regions. However, exploring the petrophysical significance of seismic-inverted elastic properties is challenging due to the complex microstructures in TGSs. Meanwhile, interbedded structures of sandstone and mudstone intensify the difficulty in accurately extracting the crucial tight sandstone properties. An integrated rock-physics-based framework is proposed to estimate the reservoir quality of TGSs from seismic data. TGSs with complex pore structures are modeled using the double-porosity model, providing a practical tool to compute rock physics templates for reservoir parameter estimation. The VP/VS ratio is utilized to predict the cumulative thickness of the TGS reservoirs within the target range via the threshold value evaluated from wireline logs for lithology discrimination. This approach also facilitates better capturing the elastic properties of the TGSs for quantitative seismic interpretation. Total porosity is estimated from P-wave impedance using the correlation obtained based on wireline log analysis. After that, the three-dimensional rock-physics templates integrated with the estimated total porosity are constructed to interpret microfracture porosity and gas saturation from velocity ratio and bulk modulus. The integrated framework can optimally estimate the parameters dominating the reservoir quality. The results of the indicator proposed based on the obtained parameters are in good agreement with the gas productions and can be utilized to predict promising TGS reservoirs. Moreover, the results suggest that considering microfracture porosity allows a more accurate prediction of high-quality reservoirs, further validating the applicability of the proposed method in the studied region. 展开更多
关键词 Tight gas sandstone reservoirs Quantitative reservoir characterization rock-physics-based framework Microfracture porosity rock physics template
下载PDF
Sweet spot prediction in tight sandstone reservoir based on well-bore rock physical simulation 被引量:6
2
作者 Hai-ting Zhou De-yong Li +2 位作者 Xian-tai Liu Yu-shan Du Wei Gong 《Petroleum Science》 SCIE CAS CSCD 2019年第6期1285-1300,共16页
To establish the relationship among reservoir characteristics and rock physical parameters,we construct the well-bore rock physical models firstly,considering the influence factors,such as mineral composition,shale co... To establish the relationship among reservoir characteristics and rock physical parameters,we construct the well-bore rock physical models firstly,considering the influence factors,such as mineral composition,shale content,porosity,fluid type and saturation.Then with analyzing the change rules of elastic parameters along with the above influence factors and the cross-plots among elastic parameters,the sensitive elastic parameters of tight sandstone reservoir are determined,and the rock physics template of sweet spot is constructed to guide pre-stack seismic inversion.The results show that velocity ratio and Poisson impedance are the most sensitive elastic parameters to indicate the lithologic and gas-bearing properties of sweet spot in tight sandstone reservoir.The high-quality sweet spot is characterized by the lower velocity ratio and Poisson impedance.Finally,the actual seismic data are selected to predict the sweet spots in tight sandstone gas reservoirs,so as to verify the validity of the rock physical simulation results.The significant consistency between the relative logging curves and inversion results in different wells implies that the utilization of well-bore rock physical simulation can guide the prediction of sweet spot in tight sandstone gas reservoirs. 展开更多
关键词 Tight sandstone reservoir Sweet spot Sensitive elastic parameter Well-bore rock physical simulation rock physics template Pre-stack seismic inversion
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部